MATH 545: MANIFOLDS FINAL EXAM PRACTICE PROBLEMS

Use these problems to prepare for your final oral exam. You are welcome to collaborate on them. I will ask you about at least one of these problems during your oral exam.
Problem 1. Let $X=S^{1} \vee S^{1}$ and let $n>2$. Give an explicit description of a covering map $p: Y \rightarrow X$ such that the image of $p_{*}: \pi_{1}(Y, y) \rightarrow \pi_{1}(X, x)$ is a free group on n generators and is a normal subgroup of index $n-1$. (You may describe Y by drawing a picture, but you must justify why p has the indicated properties.)
Problem 2. Recall (from the Math 544 final exam) that the mapping torus for a continuous map $f: X \rightarrow X$ is the quotient space

$$
M_{f}:=(X \times I) / \sim
$$

where \sim is the equivalence relation generated by $(x, 1) \sim(f(x), 0)$.
(a) Use the Mayer-Vietoris theorem to show that there is a long exact sequence of singular homology groups

$$
\cdots \rightarrow H_{n}(X) \xrightarrow{1-f_{*}} H_{n}(X) \rightarrow H_{n}\left(M_{f}\right) \rightarrow H_{n-1}(X) \rightarrow \cdots .
$$

(As part of your argument, you should identify the unlabeled arrows in the long exact sequence.)
(b) Compute the homology M_{f} where $f: S^{2} \rightarrow S^{2}$ is the antipodal map.

Problem 3. Let M be a smooth manifold with chart (φ, U) around a point $p \in M$. Let \mathcal{C}_{p} be the set of all smooth maps $\gamma:(-\varepsilon, \varepsilon) \rightarrow U$ such that $\gamma(0)=p$. Define an equivalence relation \sim on \mathcal{C}_{p} by declaring $\delta \sim \gamma$ if and only if

$$
(\varphi \circ \delta)^{\prime}(0)=(\varphi \circ \gamma)^{\prime}(0) .
$$

Give \mathcal{C}_{p} / \sim the structure of a real vector space and prove that $T_{p} M$ and \mathcal{C}_{p} / \sim are linearly isomorphic.
Problem 4. Let X denote the set of pairs of orthogonal lines through the origin in \mathbb{R}^{n+1}, viewed as a subspace of the product $\mathbb{R} \mathbb{P}^{n} \times \mathbb{R}^{n}$. Prove that X is an embedded submanifold of $\mathbb{R}^{n} \times \mathbb{R} \mathbb{P}^{n}$ and determine the dimension of X.
Problem 5. Let $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ be smooth maps. We say f_{1} and f_{2} intersect transversely when the product map $f_{1} \times f_{2}: M_{1} \times M_{2} \rightarrow N \times N$ intersects the diagonal $\Delta_{N}=\{(q, q) \mid$ $q \in N\} \subseteq N \times N$ transversely. Prove that if f_{1} and f_{2} intersect transversely, then the fiber product $F=\left(f_{1} \times f_{2}\right)^{-1} \Delta_{N}$ is a submanifold of $M_{1} \times M_{2}$, and for any $\left(p_{1}, p_{2}\right) \in F$,

$$
T_{\left(p_{1}, p_{2}\right)} F=\left\{\left(v_{1}, v_{2}\right) \mid v_{i} \in T_{p_{i}} M_{i},\left(d f_{1}\right)_{p_{1}}\left(v_{1}\right)=\left(d f_{2}\right)_{p_{2}}\left(v_{2}\right)\right\} .
$$

