MATH 544: TOPOLOGY FRIDAY WEEK 10

Recall that S^{1} is the unit circle centered at 0 in \mathbb{R}^{2}. Now consider some circles in space:

$$
\begin{aligned}
& C_{0}:=S^{1} \times 0, \\
& C_{1}:=(3,0,0)+S^{1} \times 0, \\
& C_{2}:=(0,1 / 2,0)+0 \times S^{1} .
\end{aligned}
$$

Then we may form the following link ${ }^{1}$ complement spaces

$$
\begin{aligned}
X & :=\mathbb{R}^{3} \backslash\left(C_{0} \cup C_{1}\right), \\
Y & :=\mathbb{R}^{3} \backslash\left(C_{0} \cup C_{2}\right) .
\end{aligned}
$$

More colloquially, X is the complement of two unlinked circles, and Y is the complement of two linked circles.
Problem 1. Apply the Seifert-van Kampen theorem to determine the fundamental groups of X and Y.

We are now going to physically model the spaces X and Y using the ambient universe and some carabiners. When a pair of carabiners is unlinked, the universe minus those carabiners is X; after linking the carabiners, we get Y.
Problem 2. Choose (path homotopy classes of) loops a, b such $\pi_{1} X$ is generated by a and b.
(a) Use the provided cord and carabiners to model the loop $[a, b]=a b a^{-1} b^{-1}$.
(b) What does your computation from Problem 1 tell you about $[a, b]$?

Problem 3. Retaining the cord configuration you created in Problem 2, carefully link the two carabiners so that you now have a loop in Y.
(a) Argue that the resulting loop in Y is $[c, d]$ for c, d generators of $\pi_{1} Y$.
(b) What does your computation from Problem 1 tell you about $[c, d]$?
(c) Verify your assertion pulling on the cord.

Knot theory is the study of tame embeddings $S^{1} \subseteq \mathbb{R}^{3}$ (or $S^{1} \subseteq S^{3}$) up to ambient isotopy. Here tame means that the embedding can be extended to a solid torus (i.e. "thickened") and an ambient isotopy between knots $K, L: S^{1} \hookrightarrow \mathbb{R}^{3}$ is a homotopy

$$
H: \mathbb{R}^{3} \times I \rightarrow \mathbb{R}^{3}
$$

such that each $H(-, t)$ is a homeomorphism, $H(-, 0)=\operatorname{id}_{\mathbb{R}^{3}}$, and $H(-, 1) \circ K=L$. These definition can be extended to links (where S^{1} is replaced by a disjoint union of circles).

The knot group of a link K is $\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)$. In the above problems, we studied the knot groups of a trivial link with two components (i.e. $\pi_{1} X$) and the knot group of the Hopf link (i.e. $\pi_{1} Y$).

The trefoil knot T has parametrization

$$
t \longmapsto((2+\cos (3 t)) \cos (2 t),(2+\cos (3 t)) \sin (2 t), \sin (3 t))
$$

viewed as a path $[0,2 \pi] \rightarrow \mathbb{R}^{3}$ (which naturally descends to an embedding $T: S^{1} \cong \mathbb{R} / 2 \pi \mathbb{Z} \hookrightarrow \mathbb{R}^{3}$).

[^0]Problem 4. In this problem, you will determine the knot group of T.
(a) Show that T lives in a torus inside \mathbb{R}^{3}.
(b) Let U be an open thickening of the torus minus T and let V be the complement of an appropriate closed thickening of the torus (so that $U \cup V=\mathbb{R}^{3} \backslash T$). Use the Seifert-van Kampen theorem applied to U and V to prove that

$$
\pi_{1}\left(\mathbb{R}^{3} \backslash T\right) \cong\left\langle a, b \mid a^{2}=b^{3}\right\rangle .
$$

The group $\left\langle a, b \mid a^{2}=b^{3}\right\rangle$ is a presentation of the braid group B_{3} on three strands. We will see it in a different guise next week.

Given a link diagram (a nice projection of your link onto the plane with under- and overcrossings recroded), the Wirtinger presentation allows you to produce a presentation for the associated knot group. The proof is a direct application of the Seifert-van Kampen theorem. See D. Rolfsen, Knots and links, §3D for details.

[^0]: ${ }^{1}$ A link is an embedding of a disjoint union of circles into space.

