Function spaces
Note that $\operatorname{set}(z \times x, y) \cong \operatorname{set}(z, \operatorname{set}(x, y))$

$$
\begin{aligned}
& g \downarrow \prod_{y}^{z \times X} \stackrel{\hat{g}}{z} \prod^{z} \\
& 4 \quad \operatorname{Sat}(X, Y) \quad g(z,-): x \mapsto g(z, x)
\end{aligned}
$$

Computer scientists like of call these "currying" \&uncurrying".
In algebra, a variant with \otimes in place of x is the "Tensor-Hom adjunction": $\operatorname{Hom}(C \otimes A, B) \cong \operatorname{Hom}(C, \operatorname{Hom}(A, B))$ (say for Hon = maps in $V_{k c t}$ or $A b$).
Q Is there a topology on Top (x, y) such that

$$
\forall z \in T_{o p}, \quad T_{\operatorname{Tp}}\left(z, T_{o p}(x, y)\right) \cong T_{\text {op }}(z \times x, y) ?\left\{\begin{array}{l}
\text { enrich } ? ~ \\
\text { chinetion of sets }
\end{array}\right.
$$

bijection of sets \ldots. called the exponential
A Sometimes; if it exists, it's unique - called the exponential topology.
When $C(x, y) \in C \quad \forall x, y$ and $C(z, c(x, y)) \cong C(z \times x, y)$ $\forall z$, then C is called Cartesian closed.
Top is not Cartesian closed.
In nice cases, the exponential topology is the "compact open topology".
Doff For x, y spaces, $k \leq x$ compact, $u \leq y$ open, define $S(k, u):=\left\{f \in T_{\text {op }}(x, y) \mid f k \subseteq u\right\}$. The sets $s(k, u)$ form the subbasis for a topology on Top (x, y) called the compact open topology.

Note $T_{o p}(x, y) \subseteq y^{X}=\prod_{x \in X} y$. The subspace topology on $T_{o p}(x, y)$ inside n Y^{X} is the "finite open topology" w/ sabbasis $S(F, U), F \subseteq X$ finite, $U \subseteq 4$ open.

Them If X is loc compact H^{\prime} 'ff and Y is any space, then the compact open topology on $T_{o p}(X, Y)$ is exponential.
If Step, If $g: z \times x \rightarrow y$ is cts, then $\hat{g}: z \rightarrow \operatorname{Top}(x, y)$ is cts: Nad to show that for each $S(k, u)$, $\hat{g}^{-1} S(k, u)=\{z \in Z \mid g(k, z) \subseteq U\} \leq Z$ is open. For $z \in \hat{g}^{-1} S(k, u)$, know $g^{-1} U \subseteq X \times z$ open and contains $\left.K \times 1 \neq\right\}$. By the Tube Lemma (4.55) $\exists V, W$ open W. $K \subseteq V, z \in W$ and $K \times\left\{\frac{z}{f}\right\} \subseteq V \times W \subseteq g^{-1} U$. Now $z \in W \subseteq \hat{g}^{-1} S(k, u)$ as needed.

Step 2 eval: $X \times T_{\text {op }}(X, Y) \longrightarrow Y$ is cts. (unis loo apt HIff $(x, g) \longmapsto g(x) \quad$ hypothesis on X
Step 3 continuity of eval implies $F \longmapsto F$ takes cts F to cts \check{F} (See Topology: A Categorical Approach 5.6.1 for details.)
Eg. For X loo est Hoff, a homotopies $H: X \times I \longrightarrow Y$ ara in bijectiva corr with cts maps $\hat{H}: I \rightarrow \underbrace{}_{\text {op }}(X, Y)$.
compact open top
"morin" of cts maps
Eng. For a pointed space $\left(X_{, p}\right)$, define $\Omega\left(X_{, p}\right)=T_{\text {pp* }}\left(\left(s^{\prime}, 1\right),\left(X_{, p}\right)\right)$ topologized as a subspace of $\mathcal{L} X:=\operatorname{Top}\left(S^{\prime}, X\right)$ w/ apt open top.

Q What is $\pi_{0} \Omega(X, p)$?
A Suppose $f_{i g} \in \Omega(X, p)$ and $\gamma:[0,1] \longrightarrow \Omega(X, p)$ is a path from f to g. Get cts $\gamma^{v}:[0,1] \times S^{\prime} \rightarrow X$ which is a path htpy from f to g. Similarly, path htpies between loops induna paths in $\Omega(X, p)$. Thus $\pi_{0} \Omega(X, p)=\pi_{1}(X, p)$
This is a case of the suspension - loops adjunction:

$$
\operatorname{Hot}_{*}\left([(x, p),(y, q)) \cong \operatorname{Hot}_{*}((x, p), \Omega(y, q))\right.
$$

whirs $[(x, p)=X \times I / X \times 0 \cup X \times 1 \cup\{p\} \times I$
Fact $\left[S^{n} \simeq S^{n+1} \Rightarrow \pi_{0} \Omega^{n}(X, p) \simeq \pi_{n}(X, p)\right.$.

$$
\Omega_{\Omega} \cdot \Omega \cdot \Omega \cdots \Omega
$$

Misterm
S(c) $S^{3}=D^{2} \times 5^{1} \cup S^{\prime} \times S^{1}$

cell up x, Y, Z, cellular maps $z \longleftrightarrow x$
then $X \underset{z}{\cup}$ has union cell structure

$$
\begin{aligned}
& (x \cup y)_{k}=x_{k}{\underset{z}{k}}^{y_{k}}
\end{aligned}
$$

