$$
5 . \overline{x n} .22
$$

w] $\pi, \cong \mathbb{Z} * \mathbb{Z}$

Set $p_{1}=1, p_{n}=0$.
Recall $M_{n}:=\left\{\left(p_{2}, \ldots, p_{n-1}\right) \in \mathbb{C}^{n-2}| | p_{k+1}-p_{k} \mid=1\right.$ for $\left.1 \leq k \leq n-1\right\}$ $\subseteq \mathbb{R}^{2 n-4}$
Think of a point $p \in M_{n}$ as an equilateral n-gon:

Give $M_{n} \subseteq \mathbb{C}^{n-2} \cong \mathbb{R}^{2 n-4}$ the subspace topology.
Then M_{n} is the moduli space of unilateral n-gons (with vertices labelled).

From day 1

Goal Understand M_{5}.

$0<l<2$: Exactly two possible values for p_{3}
$l=2$: p_{3} is the midpoint of $\overline{p_{2} p_{4}}$.
$l=0$: p_{3} is any point in $p_{2}+S^{\prime}=p_{4}+S^{\prime} \quad$ (occurs; if $\alpha \cdot p=\pi / 3$ or $5 \pi / 3$)
$2<l: \nexists^{\prime} p_{3}$

Define $R \subseteq M_{5}$ to be pentagons with $0<l \leq 2$
Define $D:=\left\{(\alpha, \beta) \in S^{\prime} \times 5^{\prime} \mid 0<l \leq 2\right\} \quad\left(\text { Note } l^{2}=(1-\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}\right)^{2}$
Then $\partial D=\left\{(\alpha, \beta) \in S^{\prime} \times S^{\prime} \mid h=2\right\}$ and

$$
\begin{aligned}
\text { Set } \bar{D} & =\{(\alpha, \beta) \mid 0 \leq \ell \leq 2\} . \\
\text { Note } \partial \bar{D} & =\{(\alpha, \beta) \mid \ell=2\} \\
& \cong 5^{\prime}
\end{aligned}
$$

In fact, $\bar{D} \cong T^{2} \backslash e^{e^{2}}$
small open disk

$$
\Longrightarrow D \cong \mathbb{T}^{2} \cdot\{e^{2} \cup \underbrace{t_{1}}_{\alpha=\beta=\frac{\pi}{3}} \cup \underbrace{\bar{t}_{1}}_{\alpha=\beta=\frac{5 \pi}{3}}\}
$$

Thus $R \cong$

Model closed nbhds of t_{1}, t_{2} by CS' t_{i}
In M_{5}, t_{1}, t_{2} get ruplaad by circles glued together:

and similarly for \bar{t}_{1}, \bar{t}_{2}. (by glue antipodal map - preserves or'n)
Thus $M_{5} \cong$

M. Freedman's ugrad thesis

$$
\cong\left(\mathbb{I}^{2}\right)^{\# 4} .
$$

$\left.\left(\mathbb{R}^{3}, C\right)\right)=y \quad$ Q what is $\pi, 4$?

$u=\left(\right.$ open thickening of $\left.\pi^{2}\right) \backslash H_{0} f \operatorname{lin} k$
$V=\mathbb{R}^{3}$-((mater) closed thickening of $\left.\mathbb{T}\right)$ nv
$u=$ shrink radius of torus \& take exterior (unbid) $\backslash C$
$V=$ dilate radius of torus \& take interior
(bod) $\perp H L$

$$
\begin{aligned}
U \cap V & =\text { furzy tors } \backslash \text { Hops link } \\
& \simeq \mathbb{T}^{2} \simeq \text { Ho pf link }
\end{aligned}
$$

