Proof of SvN Space $X, U, v \leq X$ open, $U \cup v=X$, $U \cap V$ path connected. For paths a, b, write $\underset{s}{\sim} b$ for a, b paths in $S \subseteq X$ path homotopic in S. Write $[a)_{s}$ for the class of a in $\pi_{1}(s, p)$. Note

Notation: $=$ concatenation. * fro product
eng. $[a]_{u} *[b]_{U} *[c]_{v}=[a \cdot b]_{u} *[c]_{V} \in \pi, U * \pi, V$
The unique $\operatorname{map} \Phi: \pi_{1} l l_{*} \pi_{1} V \rightarrow \pi_{1} X$ is given by

$$
\begin{aligned}
& \Phi\left(\left[a_{1}\right]_{U} *\left[a_{2}\right]_{v} * \cdots *\left[a_{m-1}\right]_{U} *\left[a_{m}\right]_{v}\right) \\
& \\
& =\left[a_{1}\right]_{X} \cdot\left[a_{2}\right]_{X} \cdots\left[a_{m-1}\right]_{X} \cdot\left[a_{m}\right]_{X} \\
& \\
& =\left[a_{1} \cdot a_{2}-a_{m-1} \cdot a_{m}\right]_{X}
\end{aligned}
$$

WTS: (1) Φ surf (2) $\overline{\mathrm{C}} \leq \operatorname{kur} \Phi$ (2) $\operatorname{ker} \Phi \leq \bar{C}$ for $C=\left\{\left(i_{+} \gamma\right)\left(j_{+} \gamma\right)^{-2} \mid \gamma \in \pi, u \cap V\right\}$
WLOG: replace U, V WI their path components containing p.
(1) I surj: For a: $I \rightarrow X$ a loop at p, Lebesgue $\#$ lemma gives as $n \in \mathbb{Z}_{+}$ s.t. $a\left(\frac{i-1}{n}, \frac{i}{n}\right] \leq U \propto V$. (Uses U, V open!) Let $a_{i}=\left.a\right|_{\left[\frac{i-1}{n}, \frac{1}{n}\right]}$ ruparam'd to have domain I. Then

$$
[a]_{x}=\left[a_{1} \cdot \cdots \cdot a_{n}\right]_{x} .
$$

u

For $i=1, \ldots, n-1$ choose h_{i} path $p \leadsto a(i / n)$ where if $a(i / n) \in$ Un v then h_{i} lies in UnV: of s lies all in U or all in V.
(This uses U, V, un path conn'd.) Set $\tilde{a}_{i}:=h_{i-1} \cdot a_{i} \cdot \bar{h}_{i}$
(where $h_{0}, h_{n}=c_{p}$), so each \tilde{a}_{i} is a loop at plying entirely in $U_{\text {or }} V$. Then $[a]_{X}=\left[\tilde{a}_{1} \cdot \cdots \cdot \tilde{a}_{n}\right]_{X}$, and
$\beta=\left[\tilde{a}_{1}\right]_{u_{v}} *\left[\tilde{a}_{2}\right]_{u_{v}} * \cdots *\left[\tilde{a}_{p}\right]_{u_{o r v}}$ (uorvaccording ti whirs \tilde{a}_{i} lies) satisfies $\Phi(\beta)=[a]_{x}$.
(2) $\bar{C} \subseteq$ bar Φ : Suffices to show $c \subseteq$ her $\Phi b / c$ bur Φ is a normal saba. Take $\gamma=[a]_{\text {Inv }} \in \pi_{1}(U n V)$. Then $\Phi\left(\left(i_{*} \gamma\right) *(j, \gamma)^{-1}\right)=\Phi\left([a]_{u} *[-\bar{a}]_{V}\right)$ $=[a \cdot \bar{a}]_{x}=1$.
(3) $\operatorname{kur} \Phi \subseteq \bar{C}$ (the serious part!): Let $\left.\alpha=\left[a_{1}\right)_{u} *\left[a_{2}\right]_{v} * \cdots{ }^{\pi_{1}}{ }^{l} a_{k}\right]_{V} \in \pi_{1} U+\pi_{1} V$ and suppose $\Phi(\alpha)=e$. This means $a_{1} \cdots a_{k} \tilde{x}_{p}$. Need tr show $\alpha \in \bar{C}$
Let $H: I \times I \rightarrow X$ be a path hips $a_{1} \cdots a_{h}$ to c_{p} in X.
By lebesgue \# lemma, $\exists n \in \mathbb{Z}_{+}$st. $S_{i j}:=\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\left[\frac{j-1}{n}, \frac{j}{n}\right]$ is mapped by H into U or V.
Let $v_{i j}=H\left(\frac{i}{n}, \frac{j}{n}\right)$ and $l e t a_{i j}=\left.H\right|_{\left[\frac{i-1}{n}, \frac{i}{n}\right] \times\{j / n\}}, b_{i j}=\left.H\right|_{\{i n\rangle \times\left[\frac{j-1}{n}, \frac{j}{n}\right]}$ both reparcim'd to have domain I.

$\left.H\right|_{I \times 0}=a_{1} \cdots a_{k}$. By taking n to be a large power of 2 , wa can take endpts of the a_{i} to be of the form j / n

$$
\begin{aligned}
& \left.\Rightarrow \quad H\right|_{I \times 0}-a_{1} \cdots a_{k} \sim\left(a_{10} \cdots a_{q 0}\right) \cdots\left(a_{r_{0}} \cdots a_{n 0}\right) \\
& \Rightarrow \quad \alpha=\left[a_{10} \cdots a_{q 0}\right]_{u} * \cdots *\left[a_{r_{0}} \cdots a_{n 0}\right]_{V}
\end{aligned}
$$

Take $h_{i j}: p \leadsto v_{i j}$ in $U r_{i} V$ if $v_{i j} \in U \cap V$, o/w in U or in V.

If $v_{i j}=p$, take $h_{i j}=c_{p}$. Define $\tilde{a}_{i j}=h_{i-1, j} a_{i j} \cdot \bar{h}_{i j}$

$$
\tilde{b}_{i j}=h_{0, j-1} \cdot b_{i j} \cdot \bar{h}_{i j} \quad \text { all in } U_{o r}
$$

Then $\alpha=\left[\tilde{a}_{10}\right]_{u_{o r v}} *\left[\tilde{a}_{20}\right]_{u_{n v}} * \cdots *\left[\tilde{a}_{n_{0}}\right]_{u_{o r v}}$
Strategy Work our way up the rows of the square showing $\alpha \equiv\left[\bar{a}_{1 j}\right]_{\text {uorv }} *\left[\tilde{a}_{2 j}\right]_{u_{m v}} * \cdots *\left[\tilde{a}_{n j}\right]_{u_{\text {or } v}}$ mad \bar{c}.
At the top we get c_{p}. whence $\alpha \in \bar{C}$ as desired.
Induction step: Assume $\alpha \equiv\left[\tilde{a}_{1, j-1}\right]_{u}$ or $* \cdots *\left[\tilde{a}_{n, j-1}\right]_{u_{r v v} \bmod } \bar{c}$ Note that if a is a pooh in Unv, them $[a]_{u} \equiv[a]_{v} \bmod \bar{c}$

Suppose $H S_{i j} \subseteq V$. Then by the square lemma,

$$
\begin{aligned}
& a_{i, j-1} \approx b_{i-1, j} \cdot a_{i j} \cdot \bar{b}_{i j} \\
& \Rightarrow \tilde{a}_{i, j-1} \approx \tilde{b}_{i-1, j} \cdot \tilde{a}_{i j} \cdot \overline{\tilde{b}}_{i j} \quad \text { (h's cancel w/ } \bar{h}^{\prime} s \text {) } \\
& c=\left\{[a]_{u} \cdot[\bar{a}]_{v} \mid a \log \text { in } u n v\right\}
\end{aligned}
$$

For each factor $\left[\tilde{a}_{i, j-1}\right]_{U}$, check if $S_{i j}$ is mappend into U or V. If V, then $\tilde{a}_{i, j-1}$ lands in UV so wa can replace with $\left[\tilde{a}_{i, j-1}\right]_{V}$ mod \bar{C}. Correct each factor w/ $S_{i j}$ mapping into U similarly.
Now each $\left[\tilde{a}_{i, j-1}\right]_{v}$ can be replaced by $\left[\tilde{b}_{i-1, j}\right]_{v} *\left[\tilde{a}_{i j}\right]_{v} *\left[\tilde{b}_{i j}\right]_{v}^{-1}$ and similarly for the factors in U. The $[\tilde{b}]^{\prime}$ s cancel and we get $\alpha \equiv\left[\tilde{a}_{i j}\right]_{u} * \cdots *\left[\tilde{a}_{n_{j}}\right]_{v} \bmod \bar{c}$ as desired.

$$
\begin{aligned}
\alpha & \equiv\left[\tilde{a}_{1, j-1}\right]_{u} *\left[\tilde{a}_{2, j-1}\right]_{V} * \cdots *\left[\tilde{a}_{n, j-1}\right]_{V} \\
& \equiv\left[\tilde{b}_{0, j}\right]_{u}+\left[\tilde{a}_{1, j}\right]_{u} *\left[\tilde{b}_{1, j}\right]_{u}^{-1} *\left[\tilde{b}_{1, j}\right]_{V}+\cdots \\
& \equiv\left[\tilde{a}_{1, j}\right]_{u}+\left[\tilde{a}_{2, j}\right]_{V} * \cdots
\end{aligned}
$$

