other lift, thin $\varepsilon(\tilde{f}(s))=\varepsilon\left(\tilde{f}^{\prime}(s)\right) \Rightarrow \tilde{f}(s)-\tilde{f}^{\prime}(s) \in \mathbb{Z} \forall s$ Since I is connected, $\tilde{f}-\tilde{f}^{\prime}$ cts, know $\tilde{f}-\tilde{f}^{\prime}$ is constant.
Cor 2 (Path lifting criterion for s^{\prime}) Suppose $f_{0}, f_{1}: I \longrightarrow 5^{\prime}$ with same endpoints, and $\tilde{f}_{0}, \tilde{f}_{1}$ are lifts wb same initial point. Then $f_{0} \sim f_{1}$ iff $\tilde{f}_{0}(1)=\tilde{f}_{1}(1)$.
I.e. $f_{0} \sim f_{1}$ iff they have the same net angular change!

If If \dot{f}_{0}, \dot{f}, haw the same terminal point thin they are path htoic since \mathbb{R} ir simply conn'd. Thus $f_{0}=\varepsilon \tilde{f}_{0}, f_{1}=\varepsilon \tilde{f}$, ark path hopis
Now suppose $H=f_{0} \sim f_{1}$. By htpy lifting, and $\tilde{H}: \tilde{f}_{0} \sim \tilde{H}(-, 1)$
$\underbrace{}_{\text {lift of } f_{1} \text {, starting at } \tilde{f}_{0}(0)}$

By uniqueness of lifts, $\tilde{H}(-, 1)=\tilde{f}_{1}$ so $\tilde{f}_{0} \sim \tilde{f}_{1}$. proofs of Kay Thus
I. Unique lifting for $5^{\prime}:$ Suppose B conn'd, $\varphi: B \rightarrow S^{\prime}, \tilde{\varphi}_{1}, \tilde{\varphi}_{2}: B \rightarrow \mathbb{R}$ lifts of φ agreeing at some point of B. Thin $\tilde{\varphi}_{1}=\tilde{\varphi}_{2}$.
Pf Set $\mathcal{A}=\left\{b \in B \mid \tilde{\varphi}_{1}(b)=\tilde{\varphi}_{2}(b)\right\}$. Know $A \neq \varnothing$ by hypothsir. Since B is conn'd, suffices to show U is open and closed L open: Suppose $b \in \mathcal{A}$ and write $r:=\tilde{\varphi}_{1}(b)=\tilde{\varphi}_{2}(b), z:=\varepsilon(r)=\varphi(b)$.

Take $U \leq 5$ evenly covered open nbhd of z, \tilde{U} component of $\varepsilon^{-1} U$ containing r. $O_{n} V:=\tilde{\varphi}_{1}^{-1} \tilde{u} \cap \tilde{\varphi}_{2}^{-1} \tilde{u}, \tilde{\varphi}_{1}+\tilde{\varphi}_{2}$ take values in \tilde{U}. Since ε inj on $\tilde{u}, V \subseteq A$ \Rightarrow A open.

A closed: Show But open. Take $b \in B, A, r_{1}=\tilde{\varphi}_{1}(b), r_{2}=\tilde{\varphi}_{1}(b)$ so $r_{1} \neq r_{2}$. Set $z=\varepsilon\left(r_{1}\right)=\varepsilon\left(r_{2}\right)=\varphi(b)$. Taka $u \leq S^{\prime}$ evenly covered open
 ubhd of $z, \tilde{u}_{1}, \tilde{u}_{2}$ components of $\varepsilon^{-1} u$ containing r_{1}, r_{2}, resp. Set $V=\tilde{\varphi}_{1}^{-1} \tilde{U}_{1} \cap \tilde{\varphi}_{2}^{-1} \tilde{U}_{2}$ and observe $\tilde{\varphi}_{1} V \subseteq \tilde{u}_{1}, \tilde{\varphi}_{2} V \subseteq \tilde{U}_{2}$ $\tilde{u}_{1} \cap \tilde{u}_{2}=\varnothing$ so $\quad V \subseteq B \backslash A$.
Thus Bi Us open, A closed.
Now go on to prove II.
II. Homotopy lifting property for 5^{\prime} : Suppose B is a locally conn'd space, $\varphi_{0}, \varphi_{1}: B \longrightarrow 5!, H: \varphi_{0} \simeq \varphi_{1}, \tilde{\varphi}_{0}$ a lift of φ_{0}. Then $\mathcal{J}!\tilde{H}$ sit.

If H is stationery on some $A \subseteq B$, then so is \tilde{H}.
Pf Uniqueness follows from I: If $\tilde{H}, \tilde{H}^{\prime}$ are two lifts, then for each $b \in B$, $\tilde{H}(b,-), \tilde{H}^{\prime}(b,-)$ are lifts of $H(b,-) \stackrel{I}{\Rightarrow} \tilde{H}, \tilde{H}^{\prime}$ agree e on $\{b\} \times I$ $\Rightarrow \tilde{H}=\tilde{H}^{\prime}$. The same argument works for $\tilde{H}, \tilde{H}^{\prime}$ only defined on $W \times I$ for any $W \subseteq B$.
Existence: Fix $b_{0} \in B$. For each $s \in I$, take U an evenly covered nod of $H\left(b_{0}, 5\right)$. There exist open $V \subseteq B, J \leq I$ such that
$\left(b_{0}, s\right) \in V \times J \subseteq H^{-1} U$. The cllection of all such $V \times J_{A}$ is an open cover of $\left\{b_{0}\right\} \times I$; 2 compact, so we can take a finite subcour $V_{1} \times J_{1}, \ldots, V_{m} \times J_{m}$. Let W be a connected open ibid of b_{0} contained in $V_{1} \cap \cdots \cap V_{m}$, and let exits by local conn'dness! δ be a Lebesgue number of the open cover J_{1}, \ldots, J_{m} of I.
Take $n \in \mathbb{Z}_{+}$st. $\frac{1}{n}<\delta$. Then for $j=1, \ldots, n, H\left(W \times\left[\frac{j-1}{n}, \frac{j}{n}\right]\right) \subseteq U$.

H on $W \times\left[0, \frac{1}{n}\right]$ and $\tilde{H}(b, 0)=\tilde{\varphi}_{0}(b)$ for $b \in W$ by I.
Suppose now for induction the \tilde{H} has been defined on $W \times\left[0, \frac{j-1}{n}\right]$.
Lat U_{j} be an evenly covered pen in S^{\prime} containing $H\left(W \times\left[\frac{j-1}{n}, \frac{j}{n}\right]\right)$ and take $\sigma_{j}: u_{j} \rightarrow \mathbb{R}$ local section of ε over u_{j} st. $\sigma_{j}\left(H\left(b_{0}, \frac{j-1}{n}\right)\right)=\tilde{H}\left(b_{0}, \frac{j-1}{n}\right)$.
Define $\tilde{H}(b, s)=\sigma_{j}(H(b, s))$ for $(b, s) \in W \times\left[\frac{j-1}{n}, \frac{j}{n}\right]$.
This agrees on the ouvrlap $W \times\left\{\frac{j 11}{n}\right\}$ by I (check!) and the glueing lemma gives us a lift to $W \times\left(0, \frac{j}{n}\right)$. By induction, we get a lift \tilde{H} defined on $W \times I$. Use $I+$ glueing to extend to $B \times I$. By construction, $\tilde{H}(b, 0)=\tilde{\varphi}_{0}(b)$.
Finally, if H is stationary on $A \subseteq B$, then $\forall a \in A, H(a,-)=c_{\varphi_{0}}(a)$ $w /$ unique lift starting at $\tilde{\varphi}_{0}(a)$ equal to $c_{\tilde{\varphi}_{0}(a)}$. Thus \tilde{H} is also stationary on A.

Daff Given a loop $f: I \rightarrow 5^{\prime}$, choose a lift $\tilde{f}: I \rightarrow \mathbb{R}$ of f. Then $N(f):=\tilde{f}(1)-\tilde{f}(0) \in \mathbb{Z}$ is the winding number of f.

Notes, - in $\mathbb{Z} b(c \varepsilon(\tilde{f}(0))=f(0)=f(1)=\varepsilon(\tilde{f}(1))$

- Lifts differ by a constant integer si winding number is well-defined.
Egg. $N($ cons $)=0, N\left(\left.\varepsilon\right|_{I}\right)=1, \quad N(t \mapsto \varepsilon(2 t))=2$.
The Loops $f, g: I \rightarrow s^{\prime}$ both based at p are path htoic iff $N(f)=N(g)$.
If By the path lifting property, fig have lifts $\tilde{f}, \tilde{g}: I \longrightarrow \mathbb{R}$ with $\tilde{f}(0)=\tilde{g}(0)$. By the path lifting criterion, $f \sim g$ iff $\tilde{f}(1)=\tilde{g}(1)$. This is equiv to $N(f)=N(g)$.

Write $\omega:=\left.\varepsilon\right|_{I}: t \longmapsto \exp (2 \pi i t)$.
Them $\pi_{1}\left(S^{\prime}, 1\right)$ is an infinite cyclic group generated by $[\omega]$. In particular, $\pi_{1}\left(S^{\prime}, p\right) \cong \mathbb{Z} \quad \forall_{p} \in S^{\prime}$.

Pf Define $J: \nVdash \rightleftarrows \pi_{1}\left(s^{\prime}, 1\right): K$
$n \longmapsto[\omega]^{n} \quad$ wall- defined by previous than-
$N(f) \longleftrightarrow[f]$
homomorphism:

$$
[\omega)^{m+n}=(\omega)^{n}[\omega]^{n}
$$

Suffices to prove K ir a 2 -sided inverse $+~ J$.
For $n \in \mathbb{Z}$, define $\begin{aligned} \alpha_{n}: & I \rightarrow S^{\prime} \\ & t \mapsto \operatorname{epp}(2 \pi i n t)\end{aligned} \quad$ so that $\left[\alpha_{n}\right]=[\omega]^{n}$

$$
\text { and } N\left(\alpha_{n}\right)=n \text {. }
$$

Thus $K(J(n))=K\left(\left[\alpha_{n}\right]\right)=N\left(\alpha_{n}\right)=n$ and

$$
J(K([f]))=J(N(f))=[\omega]^{N(f)}=\left[\alpha_{n}\right]=[f] .
$$

$n=N(f)^{\prime}$ same winding \#
Cor $\pi_{1}\left(\mathbb{C}^{x}, 1\right) \cong \mathbb{Z}$ and two loops in \mathbb{C}^{x} ard path htpric
$[f] \longmapsto N\left(\frac{f}{|f|}\right)$ bf they have the same lasepoint and same winding number.
Cor $\pi_{1}\left(\pi^{n},(1, \ldots, 1)\right) \cong \mathbb{Z}^{n}$.
Cor For $n \geqslant 2,5^{n} \neq \pi^{n}$
Pf $\pi_{1}\left(S^{n}\right)=e$ but $\pi_{1}\left(\pi^{n}\right)$ is non trivial.
Reading: Degree thy for 5', xp. 227-229.

Brouwer Fixed Point The Every cts map $f: \bar{B}^{2} \rightarrow \bar{B}^{2}$ has a fixed point $\left(x \in \bar{B}^{2}\right.$,.t. $\left.f(x)=x\right)$.

Pf Suppose f has no fixed point and define $\varphi: \bar{B}^{2} \longrightarrow S^{\prime}$ (wall-difined since $f(x) \neq x \forall x$).
Then $\left.\varphi\right|_{s^{\prime}}=i d_{s^{\prime}}$.

$$
\begin{aligned}
& {\left[\text { id }_{s^{\prime}}\right] \in \pi_{1}\left(5^{\prime}, 1\right)} \\
& \downarrow \\
& {[\omega] \neq 0 \in \mathbb{Z} \cong \pi_{1}\left(5^{\prime}\right) \quad 5^{\prime} \longrightarrow 5^{\prime}}
\end{aligned}
$$

$\varphi(x)$

$$
S^{\prime}=I / \text { on } 1
$$

$$
\begin{aligned}
& I \rightarrow S^{\prime} \quad \omega: t \mapsto \\
& \downarrow, J^{-\rightarrow} \exp (2 \pi i t)
\end{aligned}
$$

But this shows [ids'] extends to \bar{B}^{2} so it's nullhomotopic 0 .

Pf Rederx Construct $\varphi: \bar{B}^{2} \longrightarrow 5^{\prime}$ as above with $\left.\varphi\right|_{s^{\prime}}=i d_{s^{\prime}}$.
 commutes so

But \bar{B}^{2} is simply conn'd, so $\pi_{1}\left(\bar{B}^{2}, 1\right)=e$
$\Rightarrow \varphi_{k} l_{*}$ ir the trivial map
This is a $\underset{x}{x}$ as id: $\pi_{1}\left(5^{\prime}, 1\right) \geq$ is not trivial.

