Loose end:
Prop $f \in \operatorname{Top}(x, y)$ is a htpy equiv iff $[f] \in H_{t \in t}(x, y)$ is an isomorphism.
Pf If $f: x \simeq y: g$, thin $g f=i d_{x} \Rightarrow[g][f]=[g f]=\left[i d_{x}\right]$
and $\mathrm{fg}=\mathrm{id}_{y} \Rightarrow[f][g]=\left[f_{g}\right]=\left[i d_{y}\right]$,
s. $[f]: X \cong Y \in$ Hot.

Now chick that $[g]=[f]^{-1} \in \operatorname{Hot}(y, x)$ means that g is a hippy inverse to f.

Products Given an indexed family $\left(X_{\alpha}\right)_{\alpha \in A}$ of objects in C, an object $P=\prod_{\alpha \in A} X_{\alpha}$ equipped with $\pi_{\alpha} \in C\left(P, X_{\alpha}\right)$ for $\alpha \in A$ is the product of $\left(X_{\alpha}\right)$ whin $\forall W \in O b C, f_{\alpha} \in C\left(W, X_{\alpha}\right)$ for $\alpha \in A$,

In the binary case $(|A|=2)$ thir looks like

E.g. - In sut, Cartasian product = catigorical product

- Ir Top, Cartisian product w/product topology
- In Gp, Cartmian prodenct w/ coordinatavisa multin.

Thm If $\left(\Pi x_{2},\left(\pi_{2}\right)\right)$ exists in C, then it is aniquo up to unigue iso raspecting the projuction morphisms. I.n., if $\left(P,\left(p_{\alpha}\right)\right)$ is also the product of $\left(x_{2}\right)$, then \exists ! iso $f: \pi x_{\alpha} \longrightarrow p$ s.t. $\pi_{\alpha}=p \alpha f \quad \forall \alpha \in \mathcal{A}$.

Coproducts Given an indexed family $\left(X_{\alpha}\right)_{\alpha \in A}$ of objects in C, an object $S=\mathbb{1}_{\alpha \in A} X_{\alpha}$ equipped with morphisms ${ }_{\alpha}: X_{\alpha} \rightarrow S$ tor $\alpha \in A$ sit. $\forall W \in O b C, f_{\alpha}: X_{\alpha} \rightarrow W$ for $\alpha \in A, \quad \exists!f: S \rightarrow W$ ruck that

In the binary case:

The Coproducts are unique up to unique iso respecting the inclusion maps.

Egg. - In Sit, $\Perp=$ disjoint union.

- In Top, \Perp = disjoint union (w) disjoint union topology).
- In Topaz, $\Delta=V$, wedge sum. (Ser HW.)
- Ir $A b, \Perp=\oplus$, the direct sum. (See HW.)
- Ir Gp, $\Perp=$ free product, (Upcoming.)

Pullbacks and pushouts
Given $\quad \begin{aligned} & y \\ & I_{g}\end{aligned}$ in C, the pullback $x_{t, y}^{x} y=x_{z}^{x} y$ is $x_{z}^{x} y \xrightarrow{\pi_{y}} y$

$$
x \underset{f}{ } z
$$

such that

Eng. . In Set, $X \underset{z}{ } \times y=\{(x, y) \in X \times y \mid f(x)=g(y)\}$

- Same in Top. For $f: u \hookrightarrow X \longleftrightarrow V: g$,
$\underset{x}{U} v=\operatorname{Un} v$ (check topology matches!)
Pushouts are dual

Egg. In Set or Top,

$$
x \cup y=x \Perp y / f(z) \sim g(z)
$$

Circular reasoning
Goal $\pi_{1}\left(5^{\prime}, 1\right) \cong \mathbb{Z}$
Idea Measure angular change of a loop φ to a path in \mathbb{R} along $\quad \begin{aligned} & \mathbb{R} \\ t & \longrightarrow 5^{\prime} \\ & \exp (2 \pi i t):\end{aligned}$

$$
\underset{\varphi}{\bar{\varphi}, \cdots} \mathscr{S}^{\prime}
$$

Then $\theta(x)=2 \pi \tilde{\varphi}(x)$ measures angular change.
A Lifts do not always exist.
Prop Each point $z \in S^{\prime}$ has a nbhd U which is evenly covered by ε :
$\varepsilon^{-1} U$ is a countable union of disjoint open intervals
$\tilde{u}_{n} \quad 5.6 \quad \varepsilon / \tilde{u}_{n} \tilde{u}_{n} \cong u$.
sketch

Key Thus
I. Unique lifting for 5^{\prime} : Suppose B conn'd, $\varphi: B \longrightarrow s^{1}, \quad \tilde{\varphi}_{1}, \tilde{\varphi}_{2}: B \longrightarrow \mathbb{R}$ lifts of φ agruing at some point of B. Thin $\tilde{\varphi}_{1}=\tilde{\varphi}_{2}$

II. Homotopy lifting property for 5^{\prime} : Suppsid B is a locally coonn'd space, $\varphi_{0}, \varphi_{1}: B \longrightarrow 51, H: \varphi_{0} \simeq \varphi_{1}, \tilde{\varphi}_{0}$ a lift of φ_{0}. Then $\exists!\tilde{H}$ sit.

If H is stationary on some $A \subseteq B$, then so is \tilde{H}.
(Proofs deferred)
Cor 1 (Path lifting for S^{\prime}) If $f: I \longrightarrow 5^{\prime}, r_{0} \in \varepsilon^{-1}\{f(0)\}$, thun \exists ! lift $\tilde{f}: I \rightarrow \mathbb{R}$ of f st. $\tilde{f}(0)=r_{0}$; any other lift of f talus the form $\tilde{f}+n$ for some $n \in \mathbb{Z}$.
Pf Apply II to $B=*, H=f, \tilde{\varphi}_{0}=r_{0}$ to produce \tilde{f}. If \tilde{f} is come
other lift, thin $\varepsilon(\tilde{f}(s))=\varepsilon\left(\tilde{f}^{\prime}(s)\right) \Rightarrow \tilde{f}(s)-\tilde{f}^{\prime}(s) \in \mathbb{Z} \forall s$ Since I is connected, $\tilde{f}-\tilde{f}^{\prime}$ cts, know $\tilde{f}-\tilde{f}^{\prime}$ is constant.
Cor 2 (Path lifting criterion for s^{\prime}) Suppose $f_{0}, f_{1}: I \longrightarrow 5^{\prime}$ with same endpoints, and $\tilde{f}_{0}, \tilde{f}_{1}$ are lifts wb same initial point. Then $f_{0} \sim f_{1}$ iff $\tilde{f}_{0}(1)=\tilde{f}_{1}(1)$.
I.e. $f_{0} \sim f_{1}$ iff they have the same net angular change!

If If \dot{f}_{0}, \dot{f}, haw the same terminal point thin they are path htoic since \mathbb{R} ir simply conn'd. Thus $f_{0}=\varepsilon \tilde{f}_{0}, f_{1}=\varepsilon \tilde{f}$, ark path hopis
Now suppose $H=f_{0} \sim f_{1}$. By htpy lifting, and $\tilde{H}: \tilde{f}_{0} \sim \tilde{H}(-, 1)$
$\underbrace{}_{\text {lift of } f_{1} \text {, starting at } \tilde{f}_{0}(1)}$

