14. XI 22

Loose end:

Coproducts Given an indexed family $(X_{\alpha})_{\alpha \in A}$ of objects in C, an object $S = \coprod X_{\alpha}$ equipped with morphisms $I_{\alpha}: X_{\alpha} \longrightarrow S$ for $\alpha \in A$ s.t. YNEOBC, f: X - W for aEA, J!f: 5 - W ruch that Xx for commuter. S----->W In the binery case : $f_{1} \xrightarrow{X_{1}}_{y \ni \downarrow f_{2}} f_{2}$ The Coproducts are unique up to unique iso respecting the inclusion maps.

 $\overline{E_{.g.}} \cdot \overline{In} \operatorname{Set}, \quad X \stackrel{\times}{\underset{z}{\times}} \gamma = \{(x,y) \in X \stackrel{\times}{\times} \gamma \mid f(x) = g(y)\}.$ · Same in Top. For f: U c X c V:g, U×V = UnV (check topology matches!) E.g. In Set or Top, Pushouts are dual : $X \cup Y = X \sqcup Y / f(z) \sim g(z) .$

Circular reasoning

Goal $\pi_1(S', 1) \cong \mathbb{Z}$

loop 9 to a path in R Idea Measure angular change of a along $E: \mathbb{R} \longrightarrow 5^{\prime}$: $t \longmapsto \exp(2\pi i t)$

 $I \xrightarrow{\varphi} S'$.

Then $\Theta(x) = 2\pi \tilde{\varphi}(x)$ measures angular change.

E hifter de not always exist.

Prop Each point 205' has a nord U which is evenly covered by E $\Sigma^{-1} \mathcal{U}$ is a countable union of disjoint open intervals $\widetilde{\mathcal{U}}_{a}$ s.t. $\Sigma | \widetilde{\mathcal{U}}_{a} \stackrel{\sim}{=} \mathcal{U}$.

I. Homotopy lifting property for 5': Suppose B is a locally cound space, &, 91: B-ss' H: 90=91, % a lift of 90. Then 3! H r.t.

- If H is stationary on some A = B, then so is H. (Proofs deferred)
- Cor 1 (Path lifting for S') If f: I -> 5', ro ez' (flo) f, then J! lift
 - F: I → R of f s.t. F(c): ro; any other lift of f takes the form F + n for some n ∈ Z.

 - Pf Apply II to B= *, H=f, 9 = ro to produce f. If f' is some

