$$
\begin{aligned}
& =[\bar{g}]\left[f_{1}\right]\left[f_{2}\right][\bar{g}] \\
& =\Phi_{g}\left(\left[f_{1}\right]\left[f_{2}\right]\right) .
\end{aligned}
$$

Since $\Phi_{\bar{g}}$ is inversest Φ_{g}, it's an isomorphism.
Cir la Reprusentatives
A loop $f: I \longrightarrow X$ is the same thing as $\hat{f}: 5^{\prime} \longrightarrow X$ $0,1 \mapsto p$

$$
\exp _{p}(2 \pi i t) \mapsto f(t)
$$

Prop supposin is a loop beshd at p with $1 \mapsto p$ circle $\operatorname{rup} \tilde{f}$. Then TFAE
(a) $f \sim c_{p}$
(b) $\tilde{f} \simeq$ const
(c) $\begin{aligned} & 5^{1} \xrightarrow{\tilde{f}} x \\ & \int_{D^{2}}, x^{\pi}\end{aligned}$

Pf $(a) \Rightarrow(b):$ Take $H: f \sim c_{p}$. Then $I \times I \xrightarrow{H} X$ respects vertical

Thun $\tilde{H}: \tilde{f} \simeq c_{1}$
(b) $\Rightarrow(c)$: Suppose $H: S^{\prime} \times I \rightarrow X$ is a htpy b/w \tilde{f} and a constant mas $k: s^{\prime} \rightarrow X$. Then
$S^{\prime} \times I \xrightarrow[,>]{H}$ respects vertical quotient map's
CS^{\prime}

$$
D^{2} \cong C S^{\prime} \prime^{\prime} \tilde{H} \text { and }\left.\tilde{H}\right|_{S^{\prime}}=\tilde{f}
$$

(c) $\Rightarrow(a)$: Assume \hat{f} extends to $F: D^{2} \rightarrow X$. Since D^{2} is convene, have the straight lime iffy $H: c_{1} \simeq \omega$ for $\omega: I \rightarrow 5^{1} \leqslant D^{2}$ $t \mapsto \exp (2 \pi i t)$.

Now $H(\partial(I \times I)) \subseteq S^{\prime}$, so $F H: I \times I \longrightarrow X$ satisfies:
 thus $F H: c_{p} \sim f$.

Cor (Square lemma) If $F: I \times I \rightarrow X$ is a cts map, then

$$
F(-, 0) \cdot F(1,-) \sim F(0,-) \cdot F(-, 1)
$$

If Previous prop $+f \sim g \Leftrightarrow f \bar{g} \sim$ cons.
π_{1} (spheres)
Dafn Call a space X simply connected when it is path connected and $\pi_{1}(X, p)$ is trivial for some (and hence all) $p \in X$.
Then For $n \geqslant 2,5^{n}$ is simply connected.
阬 Sketch Choose a base point $p \neq N=(0, \ldots, 0,1) \in S^{n}$. If $f: I \rightarrow S^{n}$ is a loop based at p not passing through N, then f is a $\operatorname{lop} p$ in $\left.5^{n}, \mid N\right\} \approx \mathbb{R}^{n}$ and this is mull-Ltpie (via, e.g,, straight limutpy). If f does pass through N_{1} "nudge" it so it (a) is $\sim f$ and (b) doesn't pars through N. Proceed as before.
(1) The "mugging" is cllicate! Use Lebesgue number lumber to guarantee you can do it. (pp. 194-195)
π_{1} (manifolds)
The The fundamental group of a manifold is countable. sketch
Pf M a $m f(d, U$ a countable corer. of M by coordinate balls.
for each $U, U^{\prime} \in U$, $U \cap U^{\prime}$ has countably many components.
Choose a point in each such component (as $U, U^{\prime} \in U$ vary) and let It denote the countable set of such points.
For $U \in U$ and $x, x^{\prime} \in \mathscr{X}$ rit. $x, x^{\prime} \in U$, choose a path $h_{x, x^{\prime}}^{U}: x \leadsto x^{\prime}$ in U.
Choose some $p \in \mathcal{X}$ as base point. Call a loop based at p special when it is a finite product of paths of the form $h_{x, x}^{u}$,
since $U \times \dot{X}^{2}$ is countable, it suffices to

u^{\prime} show that every loup based at p
is path hopis to a special path.
By the Lusesgere number lemma (open coors of compact metric spaces have a ubergue number: $\delta>0$ if. wary ut $\nu /$ diameter $<\delta$ is in some $U \in U$), cam produce $n \in \mathbb{Z}$ st. $f\left[\frac{k \cdot 1}{n}, \frac{k}{n}\right]$ ir a subset of some $U_{k} \in U$ for each $1 \leq k \leq n$. Le $f_{k}=f\left(\left[\frac{k(1)}{n}, \frac{k}{n}\right]\right.$ and note $f \sim f_{1} \cdots f_{n}$.
Now choose g_{k} as in the picture:

Set $\tilde{f}_{k}:=g_{k-1} \cdot f_{k} \cdot \bar{g}_{k}$. Then $f \sim \tilde{f}_{1} \cdots \tilde{f}_{n} b / c \bar{g}_{k} g_{k}$ cancel. Furthermore, $\tilde{f}_{k} \sim h_{x_{k-1}, x_{k}}^{u_{k}} \Rightarrow f \sim$ spuial path.
π_{1} is a functor
Prop If $f_{0} \sim f_{1}: I \rightarrow X$ and $\varphi: X \rightarrow Y$ is cts, them $\varphi f_{0} \sim \varphi f_{1}$ As such, φ induces a well-defined map $\varphi_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(Y, \varphi(p))$
$[f] \longmapsto[\varphi f]$
Prop For any cts φ, φ_{*} is a group homomorphism.
Pf Wa have $\varphi_{+}([f][g])=\varphi_{k}[f \cdot g]=[\varphi \cdot(f \cdot g)]$. But $\varphi_{0}(f \cdot g)=(\varphi \circ f) \cdot(\varphi \circ g)$ on the nose!

Prop (a) If $x \xrightarrow{\varphi} y \xrightarrow{\psi} z$ are cts, then $(\psi \varphi)_{*}=\psi_{*} \varphi_{*}$.
(b) $\left(i d_{x}\right)_{*}=i d_{\pi_{1}(x, p)}$

听 (a) $(\psi \varphi)_{*}[f]=[(\psi \varphi) f]=[\psi(\varphi f)]=\psi_{*}[\varphi f]=\psi_{*}\left(\varphi_{*}[f]\right)$
(b) $\left(i d_{x}\right)_{*}[f]=\left[i d_{x} f\right]=[f]$.

Cor If $\varphi: x \cong \xlongequal{\cong} y$, then $\varphi_{k}: \pi_{1}(x, p) \stackrel{\cong}{\Longrightarrow} \pi_{1}(y, \varphi(p))$ Pf Chuck that φ_{k} and $\left(\varphi^{-1}\right)_{k}$ ara inverses.
(1) $s^{\prime} \hookrightarrow \mathbb{R}^{2}$ induces $\mathbb{Z} \rightarrow$ on π_{1}.
for $A \subseteq X$,
Defn a map $r: X \rightarrow A$ is a retraction if $r I_{A}=i d_{A}$ (or equivalently. $\left.r_{A}=i d_{A}\right)$. If \exists retraction $X \rightarrow A$, call A a retract of X.
Eng. $\mathbb{R}^{n} \backslash 0 \longrightarrow \delta_{x}^{n-1}$ is a retraction.

$$
x \longmapsto \frac{x}{\|x\|}
$$

Prop If $r: X \rightarrow A$ is a attraction, then $V_{p} \in A,\left(n_{A}\right)_{*}: \pi_{1}(A, p) \rightarrow \pi_{1}(X, p)$ is infective and $r_{*}: \pi_{1}(X, p) \rightarrow \pi_{1}(A, p)$ is surjective.

Cor A attract of a simply conn'd space is simply cann'd. (A a retract of $X_{j} \pi_{1}\left(X_{1}\right)=\Rightarrow \Rightarrow \pi_{i}(A, p)=e$)
$\frac{E_{g}}{} \quad \pi_{1}\left(S^{\prime}, 1\right) \cong \mathbb{Z} \Rightarrow \mathbb{R}^{2} \backslash\{0\}$ is not simply conn'd $\Rightarrow \mathbb{R}^{2} \backslash 0 \not \approx \mathbb{R}^{2}$
Egg. $\quad S^{\prime} \times\{1\}$ is a retract of $T^{2}=5^{1} \times 5^{1}$ via $(z, w) \mapsto(z, 1)$
Thus π^{2} is not simply conn'd and not $\cong 5^{2}$.
π_{1} (products) Write $p_{i}: X_{1} \times \cdots \times X_{n} \longrightarrow X_{i}$ for itch projection. Given baseprints $x_{i} \in X_{i}$, get $\left(p_{i}\right)_{*}: \pi_{1}\left(X_{1} \times \cdots \times \chi_{n},\left(x_{1}, \ldots, x_{n}\right)\right) \neg \pi_{1}\left(X_{i}, x_{i}\right)$.

