Step 4 admits a presentation in which all vas are identified to a single point:

- Suppose there are more then on equivalence class of vxs after gluing. By induction, it suffices to eliminate an equivalence class (via elementary transformations) without changing the other properties of the presentation. By induction again, it suffices to eliminate at least on va from a specified equiv class w/o changing other properties.
suppose v is a $v x$ not equivalent to all other vas. Then there is an edge a from v to a vs w not equivalent to v.
$a \neq b$ Have $b \neq a$ or a^{-1} by previous conditions.

Elsewhern have $\stackrel{\leftarrow}{v} x$ or $\stackrel{\rightharpoonup}{b} \cdot x$. Assume $\vec{v}_{\vec{b}} \vec{x}^{*}$ (other case similar). Then the word in the presentation is of the form baX $b^{-1} Y$ after rotation:

Now have fewer v vas, more w vas. Perform Step 2 to remove any new adjacent complementary pairs - doesn't increase \# of v 's, so wive succeeded.

Step 5 If the prusentation has a complementary pair a, a^{-1}, then it has another complementary pair b, b^{-1} intertwined in its presentation: $a \cdots \cdots b \cdots a^{-1} \cdots b^{-1}$.

- If not, thun the prasentation is of the form $a \not X_{a} a^{-1}$ only containing complementary pairs or adjacent twisted pairs.
Thus edges of X are identified only w(adges of X, are the same is true of y :
 different vex equiv classes, e

Step 6 M admits a presentation in which all intertwined complementary pairs are adjacent: $a b a^{-1} b^{-1}$

- If the presentation is of the form $W_{a} X_{b} Y_{a}{ }^{-1} E^{-1}$, then

This replaces $a \cdots \cdots \cdots a^{-1} \cdots b^{-1}$ with $\mathrm{cd} c^{-1} d^{-1} W Z Y X$. Repeat.

Step $7 M \cong\left(\pi^{2}\right)^{\mathbb{} n}$ or $\left(\mathbb{R} \mathbb{P}^{2}\right)^{\# n}$ for sound $n \geqslant 1$.
Note $M \cong 5^{2}$ case conure in Step 2 .

- At this point, M has a presentation which has all twisted pairs adjacent, all complementary pairs w / n_{0} other edges intervening s (aba $a^{-1} b^{-1}$). If all complementary, get $\left(\pi^{2}\right)^{\text {\#n }}$; it all twisted get $\left(\mathbb{R} \mathbb{P}^{2}\right)^{\# n}$; if mixed, appeal + the lemmata and get $\left(\mathbb{R} \mathbb{P}^{2}\right)^{* n}$.

Euler charractur istic
For X a finite CW ape, $\dot{\hat{V}}$, dimite $n n_{k}:=$-cells of X. Define the Euler characteristic of X,

$$
x(X):=\sum_{k=0}^{n}(-1)^{k} n_{k}
$$

When wa study homology we will prove that $x \cong y \Rightarrow x(x)=x(y)$

Until then, we can get by with:
Prop The Euler characteristic of a polygonal presentation is unchanged by elementary transformations.
If Check the rules one by one and observe that any in/decreases in culls ara compensated for by de lincreases in all of equal magnitude.

Prop

$$
\begin{aligned}
& x\left(S^{2}\right)=2 \\
& x\left(\left(\pi^{2}\right)^{\# n}\right)=2-2 n \\
& x\left(\left(\mathbb{R}^{2}\right)^{\# n}\right)=2-n .
\end{aligned}
$$

$$
\begin{array}{llll}
\frac{k}{k} n_{k} & \text { "chi" } & \\
\hline 0 & 1 & x=1-4+1 \\
1 & 4 & =-2 \\
2 & 1 & \Rightarrow\left(\mathbb{T}^{2}\right)^{\# 2} \text { or } & \left(\mathbb{R} \mathbb{P}^{2}\right)^{\# 4} \\
112
\end{array}
$$

(2) Still doit know $\mathbb{R}^{2} \neq \pi^{2}$ $a a b b<c d d\rangle$

Orientability

- Call a surface prasentation 8 oriented if it has no twisted edge pairs. Thin coloring tops rad, bottom sides blue of polygons, we see that $|\nabla|$ is consistently colored.
- Call a compact surface orientable if it admits an oriented presentation.
(1) This is a specialized, ad hoc version of orientability.

Prop A compact surface is orientable iff $\cong 5^{2}$ or $\left(T^{2}\right)^{\# n}$.
Pf Check thea no ruflections are necessary in the algorithm from the classification then when the original presentation is orientable. Thus we necessarily ruduce to a standard presentation of J^{2} or $\left(T^{2}\right)^{A n}$.

