- Call a polygonal presentation a surface presentation if each ${ }^{28 . 区 .22}$ symbel in 5 appears exactly twice in w_{1}, \ldots, w_{k}. By the prop, $|\nabla|$ is a compact surface in this case.
- If $X \cong|P|$, call P a presentation of X.
- If $\left|P_{1}\right| \cong\left|P_{2}\right|$, write $P_{1} \cong \gamma_{2}$ and call P_{1}, γ_{2} topologically equivalent.

Prop The following elementary transformations of polygonal presentations produce topologically equivalent presentations: (convention: $e \neq 5$)

- Relabeling: eeg. $\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle \mapsto\left\langle b, \mid b c b^{-1} c^{-1}\right\rangle$
inverses $\left\{\begin{array}{l}\text { - Subdividing: replace every } a \text { with } a e, a^{-1} \text { with } e^{-1} a^{-1} \text { af } \mapsto e y^{a y} \\ \text { - Consolidating: if } a, b \text { alwhens appear as } a b \text { or } b^{-1} a^{-1} \text {, replace each } \\ \text { ab with } a b^{-1} a^{\prime \prime} \text { with } a^{-1} \text {. }\end{array}\right.$
- Reflecting: $\left\langle S \mid a_{1} \cdots a_{m}, W_{2}, \ldots, W_{k}\right\rangle \mapsto\left\langle S \mid a_{m}^{-1} \cdots a_{1}^{-1}, W_{2}, \ldots, W_{k}\right\rangle$
- Rotating: $\left\langle s \mid a_{1} a_{2} \cdots a_{m}, W_{2}, \ldots, W_{h}\right\rangle \mapsto\left\langle S \mid a_{2} \cdots a_{m} a_{1}, W_{2}, \ldots, W_{k}\right\rangle$
inverses $\left\{\begin{array}{l}\text { - Cutting: }\left\langle S \mid W_{1} W_{2}, W_{3}, \ldots, W_{k}\right\rangle \mapsto\left\langle S, 2 \mid W_{1} e, e^{-1} W_{2}, W_{3}, \ldots, W_{k}\right\rangle \\ \text { - Pasting: reverse cutting }\end{array}\right.$ inverses $\left\{\begin{array}{l}\text { - Folding: }\left\langle s, e \mid W_{1} e e^{-1}, W_{2}, \ldots, W_{k}\right\rangle \mapsto\left\langle s \mid w_{1}, W_{2}, \ldots, w_{k}\right\rangle \\ \cdot \text { Unfolding: averse folding, }\end{array}\right.$

PF Subdividing: Glue a to af instead of ait to fa.
Reflecting:

Rotating:

cutting

Prop Let M_{1}, M_{2} be surfaces admitting presentations $\left\langle S_{1} \mid W_{1}\right\rangle,\left\langle S_{2} \mid W_{2}\right\rangle$ repp, with $s_{1} n s_{2}=\varnothing$. Then $\left|\left\langle s_{1}, s_{2} \mid W_{1} W_{2}\right\rangle\right| \cong M_{1} \# M_{2}$.
Pf $\left\langle s_{1}, a, b, c \mid W_{1} c^{-1} b^{-1} a^{-1}, a b c\right\rangle \cong\left\langle S_{1} \mid W_{1}\right\rangle$ via paste, fold, fold:

Then $\left|\left\langle s_{1}, a, b, c \mid W_{1} c^{-1} b^{-1} a^{-1}\right\rangle\right| \cong M_{1}-B_{1}$
Similarly, $\left|\left\langle S_{2}, a, b, c \mid a b c W_{2}\right\rangle\right| \cong M_{2} \backslash B_{2}$
$\tau_{\text {rely word ball }}$
Thus $\left|\left\langle S_{1}, S_{2}, a, b, c \mid W_{1} c^{-1} b^{-1} a^{-1}, a b c W_{2}\right\rangle\right| \cong M_{1} \# M_{2}$
By paste, fold, fold, this presentation ir $\cong\left\langle S_{1}, S_{2} \mid W_{1} W_{2}\right\rangle$.
E.g. $\cdot\left|\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}\right\rangle \triangleq \xlongequal[=]{\wedge}\right|\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle|\#|\left\langle c, d \mid c d c^{-1} d^{-1}\right\rangle \mid$ $\cong \pi^{2} \# \pi^{2}(\sec 21, \bar{X} .22$ lecture $)$.
"standard (More generally, $\left(\pi^{2}\right)^{\# n n} \cong\left|\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{n}, b_{n}\right]\right\rangle\right|$ presentations"

$$
\begin{equation*}
\text { - }\left(R P^{2}\right)^{\# n} \cong\left|\left\langle a_{1}, \ldots, a_{n} \mid a_{1} a_{1} \cdots a_{n} a_{n}\right\rangle\right| \tag{0}
\end{equation*}
$$

Classification
The Every compact surface admits a polygonal presentation. This follows from the triangulability of compact $2-\mathrm{mf}$ Ids, a hard thm.
The (Classification of compact surfaces, Part I) Every nonempty compact connected 2 -mfld is homeomorphic to one of the following:
(a) 5^{2},
(b) $\left(\pi^{2}\right)^{\# n}$ for some $n \geqslant 1$,
(c) $\left(\mathbb{R}^{2}\right)^{\# n}$ for some $n \geqslant 1$.
(1) Presently, we cant tall whether some of the surfaces in this list might coincide (up to homes). Well need π_{1} \& the Seifert van Kampen theorem to prove they ane in fact distinct!

Lemma the Klein bottle $K=\left|\left\langle a, b \mid a b a b^{-1}\right\rangle\right| \cong \mathbb{R} P^{2} \# \mathbb{R} P^{2}$.

$$
\begin{aligned}
\left\langle a, b \mid a b a b^{-1}\right\rangle & \cong\left\langle a, b, c \mid a b c, c^{-1} a b^{-1}\right\rangle \quad \text { (cut) } \\
& \cong\left\langle a, b, c \mid b c a, a^{-1} c b\right\rangle \text { (rotate, rofl lect) } \\
& \cong\langle b, c \mid b b c c\rangle \text { (paste, rotate) }
\end{aligned}
$$

standard presentation of $\mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$

Lemma $\pi^{2} \# \mathbb{R} \mathbb{P}^{2} \cong\left(\mathbb{R} P^{2}\right)^{\# 3}$
If First note $P=\left\langle a, b, c \mid a b a b^{-1} c c\right\rangle$ is a presentation of $K \# \mathbb{R} p^{2}$ By the previous lemma, $|P| \cong\left(\mathbb{R} P^{2}\right)^{\# 3}$. Now show $|P| \cong \pi^{2} \# \mathbb{R} P^{2}$:

$\{$

upshot If we have an $\mathbb{R} \mathbb{P}^{2}$ in a connect sum decomposition $\nu / \mathbb{R} \mathbb{P}^{2}, \pi^{2}, K$ thin every summand becomes $\mathbb{R P}^{2}$!
Note $M \# S^{2} \cong M$.
Q What is the monoid of compact surfaces up to \cong under \#? (Assuming Part II.)
connected
Pf of Classification I Assume M is a compact mfld equipped w/a presentation P (by th lemma). Call a pair of edges Mote Conditions complementary if labeled a, a^{-1}; twisted if a, a. in steps are cumulative.

Step 1 admits a presentation with exactly one face:

- For induction, assume true whin P has n faces for some $n \geq l$. If γ has $n+1$ faces, connectedness of M implies $(n+1)$-th face shares an edge with one of the other faces. Paste to get a presentation w / n faces, then use the induction hypothesis.
Step 2. Either ${ }^{(a)} M \cong 5^{2}$ or admits a presentation with no adjacent complementary pairs:
- Eliminate adjacent pairs by folding. Thor terminates in (b) or $\left\langle a \mid a a^{-1}\right\rangle$ which realizes to 5^{2}.

Step 3 admits a presentation in which all twisted pairs are adjacent:

- If a twisted pair a a II not adjacent, rotate to VaWa with V, W nonempty words. Transform via

into $V W^{-1} b b$. This decreases nonadjacent pairs (twisted and complementary) by at least one, so after finitely many steps all pairs are adjacent. Use Step 2 toeliminate adjacent complementary pairs.

