Skipping simplicial complexes!

- They're great, but they wort appear later in the course, you're not responsible for the content on pp. 147-155.
Surfaces
Surface := 2-dimensional mfld ($w / 0 \partial$)
Polygon: $=$ union of finitely many closed line segments in \mathbb{R}^{2} that meet only at their endpoints, homeomorphic to S^{\prime}

Polygonal region $:=$ compact subset of $\mathbb{R}^{2} w /$ interior a regular coordinate ball, ∂ a polygon face

Prop let P_{1}, \ldots, P_{k} be polygonal regions, $P=P, \Perp \cdots \Perp P_{k}$, \sim an equivalence rein on P identifying some edges with others via affine homeomorphisms (ie. translating, rotating, reflecting, scaling).
(a) P / \sim is a finite 2-dim'l CW ape w/ 0 -rhetor= images of $v \times s$, 1-skeleton $=$ image of edges.
(b) If \sim identifies each edge in P w/exactly one other edge, then P / \sim is a compact surface.

Egg.

Pf Let $\pi: P \longrightarrow M:=P / \sim$ be the quotient map,

$$
M_{0}:=\pi\{r \times s\}, \quad M_{1}:=\pi \partial P, \quad M_{2}=M .
$$

Them M_{0} is discrete, and for $k=1,2, M_{k}=M_{k-1} \cup($ finititly many $\underset{k-c e l l s}{ })$.
Thus M is a finite 2 -dim'l CW ope by defn.
, Euclideanity?
For (b), we now only need to check local Euclideanness.
If $x=\pi$ (interior pt of P)
If $x=\pi(e d g e, v x s$ pt of $P)$

If $x=\pi(v x$ of $P)$, there is something to check:
$\pi^{-1}\{x\}=\left\{v_{1}, \ldots, v_{l}\right\} \in\{v \times s$ of $p\}$. Thor smell $r>0$ sit.
$B_{\varepsilon}\left(v_{i}\right) \cap\{v x s\}=\left\{v_{i}\right\}, B_{\varepsilon}\left(v_{i}\right) \cap\{$ eyes $\}$ contains no edges other than those incident with v_{i}. Then $B_{\varepsilon}\left(v_{i}\right) \cap P_{j}$ is of the form
and we may form a homes

$$
B_{\varepsilon}\left(v_{i}\right) \cap \psi_{j} \cong\left\{\exp (\operatorname{ir} \theta) \left\lvert\, \begin{array}{l}
\theta_{0} \leq \theta \leq \theta_{0}+2 \pi / l \\
0 \leq r<\varepsilon
\end{array}\right.\right\}=\underbrace{}_{\varepsilon}(\text { hera } l=3)
$$

Glue thus together to gat

Building surfaces Recall from HW, $M_{1} \# M_{2}$ the connected sum of M_{1}, M_{2}. In several, there are two connected sums depending on whether $\partial B_{1} \cong \partial B_{2}$ is orientation-preserving or reversing.

Later weill be able to prove connected sums of compact surfaces are unique up to homes.
E.g. $\mathbb{T}^{2} \# M \cong(M$ with a hand le attached $):=M_{0} u_{\psi}\left(5^{1} \times[0,1]\right)$
for $M_{0}=M-(2$ reg cord balls $), \varphi: s^{1} \times\{0,1\} \rightarrow M_{0}$ attaching the ends of $5^{\prime} \times[0,1]$ to M_{0}

Why?

Sub-e.g. $\left(\pi^{2}\right)^{\# n} \cong\left(\delta^{2}\right.$ w/ n handles attached $)$

Polygonal presentations of surfaces
Given a set 5 , a word in 5 is an ordered k-tuple (written as a string) of symbols of the form a or a^{-1} for $a \in S$.
A polygon al presentation $\gamma=\left\langle s \mid W_{1}, \ldots, W_{k}\right\rangle$ is a finite set 5 together with finite words W_{1}, \ldots, W_{k} of length $\geqslant 3$ st. Wert symbol of s convention: $\left\langle\{a, b\} \mid a b a^{-1} b^{-1}\right\rangle=:\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle$. ${ }^{\text {appears in in }}$ lat mot word. Also allow $\langle a \mid a a\rangle,\left\langle a \mid a^{-1} a^{-1}\right\rangle,\left\langle a \mid a a^{-1}\right\rangle,\left\langle a \mid a^{-1} a\right\rangle$.
The geometric realization of $\gamma,|\gamma|$, is then following space:
(1) For each W_{i}, let P_{i} be the unit regular convex $k \cdot$ goo $w / v x$ on $V^{\text {positive }} y$-axis where $k=$ length (W_{i})
(2) Start at top point of P_{i} \& Label edges counterclockwise ω /symbols of W_{i}. (a - label w/a in cow direction. a^{-1}-label w/ a in cw direction)
(3) Dafin ~ on $\bigcap_{i=1}^{\hat{C}} P_{i}$ which identifies edges $\nu 1$ same edge symbol vie an affine homes of the forms af l,
(4) Set $|P|=\varliminf_{i=1}^{l} P_{i} / \sim$.

Note: Use a biegon for presentations $\langle a \mid a a\rangle,\left\langle a \mid a a^{-1}\right\rangle$ etc.
Egg.

$$
\begin{aligned}
& \left|\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle\right|=\sum_{a}^{b} / \sim \cong \mathbb{T}^{2}, \\
& |\langle a \mid a a\rangle|=a \cdot a \approx \mathbb{P}^{2}, \quad\left|\left\langle a \mid a a^{-1}\right\rangle\right|=a a \cong \delta^{2} .
\end{aligned}
$$

TPS Determine the homeomorphism types of $\left|\left\langle a, b \mid a b b^{-1} a\right\rangle\right|$

$$
*\left|\left\langle a, b \mid a b a b^{-1}\right\rangle\right|
$$

