Hop mex and $\mathbb{C P}^{2}$

$$
\begin{aligned}
& S^{3} \xrightarrow{n} \frac{\eta}{\mathbb{C}^{2} \cdot\{0\} \longrightarrow \mathbb{C}^{2},\{0\} / \mathbb{C}^{x}=: \mathbb{C} \mathbb{P}^{1} \cong S^{2}} \\
& u_{0}=\{[z: 1] \mid z \in \mathbb{C}\} \cong \mathbb{C}
\end{aligned}
$$

- $\quad s^{3} \xrightarrow{\eta} S^{2} \quad \mathbb{C} P^{\prime} \backslash u_{0}=\{[1: 0]\} \Rightarrow \mathbb{C} P^{\prime}=$ one-point compactification of $\mathbb{C}$
$\downarrow_{e^{4}}^{r} \underbrace{2}$

$$
\begin{aligned}
& e^{4} \longrightarrow s^{2} v_{\eta}^{4} \cong e^{0} \cup e^{2} v e^{4} \\
& \left.\mathbb{C} \mathbb{P}^{2}:=\mathbb{C}^{3} \backslash\{0\} / \mathbb{C}^{x} \supseteq \mathbb{C} \mathbb{P}^{1} \text { as points }\left\{[x: y: 0] \mid(x, y) \in \mathbb{C}^{2} \cup 10\right\}\right\} \\
& \mathbb{C} \mathbb{P}^{2} \backslash \mathbb{C} \mathbb{P}^{\prime}=\left\{[x: y: 1] \mid(x, y) \in \mathbb{C}^{2}\right\} \cong \mathbb{C}^{2} \cong \mathbb{R}^{4} \cong\left(e^{4}\right)^{0}
\end{aligned}
$$

Challenge Prove $\mathbb{C P}^{2} \cong e^{0} \cup e^{2} \cup e^{4}$ and that $\mathbb{C} \mathbb{P}^{n}$ has a $C W$ structure with one cell in each even dimn $2 k, 0 \leq 2 k \leq 2 n$.

Products of CW complexes
If $X, Y$ are CW complexes with characteristic maps $\Phi_{\alpha}: e_{\alpha}^{m} \rightarrow X$, $I_{\beta}: e_{\beta}^{n} \rightarrow Y$, then $e_{\alpha}^{m} \times e_{\beta}^{n}$ is an $(m+n)$-cell and we have a map $\Phi_{\alpha} \times \bar{\Psi}_{\beta}: e_{\alpha}^{m} \times \alpha_{\beta}^{n} \rightarrow X \times y$.

$$
(a, b) \longmapsto\left(\Phi_{\alpha}(a), \Phi_{\beta}(b)\right)
$$

These are not necessarily
the characteristic maps of a CW structure on $x \times y$ !
Given a space $X$, write $X_{c}$ for the compactly gen'd top. logy on $X$ with $u \leq X_{c}$ open iff $u n k \leq K$ open $\forall K \subseteq X$ compact. (Potentially finer.)
The $\Phi_{\alpha} \times \Psi_{\beta}$ ara characteristic maps for a $C W$ structure on $(X \times Y)_{c}$ If either $X$ or $Y$ is (locally) compact, then $(x \times y)_{c}=x \times y$; also true when both $X, Y$ have countably many cells.

Classification of 1 -imflds
THM Every compact connected 1 -mfled is $\cong 5^{\prime}$, every nonicompact connected 1 -mfle is $\cong \mathbb{R}$.

or

Well prover this via regular CW decompositions.
Thu Every $1-\mathrm{mfld}$ admits a regular CW decomposition. Pf Let $M$ be a $1-\mathrm{mfld}$. Then it has a countable cover $\left\{U_{i}\right\}_{i \in N}$ by regular coordinate balks. Hera $U_{i} \cong \mathbb{B}^{\prime}=(0,1), \bar{u}_{i} \cong \bar{B}^{\prime}=[0,1]$.
ut $M_{n}=\bar{u}_{0} \cup \cdots \cup \bar{u}_{n} \Rightarrow M=\bigcup_{n \in \mathbb{N}} M_{n}$.
(1II) Construct a finite regular call decomp'n $\varepsilon_{n}$ of $M_{n}$ sit. $M_{n-1}$ is a subzomplex of $M_{n}$.
Once we do this: $\varepsilon=U \varepsilon_{n}$ harp pairwise disjoint cells with union $M$.

For any $x \in M, \exists n$ sit. $x \in U_{n} \subseteq M_{n}$, whence calks of $E \backslash \varepsilon_{n}$ ark disjoint from $M_{n} \Rightarrow U_{n}$ a nibhd of $x$ intersecting no cells of $\varepsilon$ except those in $\varepsilon_{n}$.
Thus $\varepsilon$ is locally finite $\Rightarrow C W$.
It remains to construct $\varepsilon_{n}$ : let $\varepsilon_{0}=\left\{1\right.$ cell $u_{0}$, two $\partial$ orcells of $\left.\bar{u}_{0}\right\}$
This is a regular call decompir of $M_{0}=\bar{U}_{0}$.
Fix $n \geqslant 0$ and assume (for strong, induction) that for $i=0, \ldots, n$ we've built $\Sigma_{i}$.
Construct a finite regular cell decomp $c$ of $\bar{u}_{n+1} \cong[0,1]$ by
taking $O$-cells $=0$-cells of $\varepsilon_{n}$ in $U_{n+1}$ together with $\partial \bar{u}_{n+1}$;
1 -cells $=$ intervening open intervals.


Claim Each cell in $C$ is dither contained in a cell of $\varepsilon_{n}$ or is disjoint from all cells of $\varepsilon_{n}$.

Indue, if $e$ is a 1 -cell in $E_{n}$ s.t. c ne $\neq \varnothing$ for some $\mid-$ cell $c \in C$, then $c n \bar{e}=c n e$. Since $e \in M$ open, $\bar{e} \in M$ closed, get ane clopen in $c$ Since c connected, ene $=c \Rightarrow c \leq e$.
Take $\varepsilon_{n+1}=$ union of $\varepsilon_{n} w /$ cells in $d$ not contained in any cells of $\varepsilon_{n}$.
This works!
Lemma For Ma 1 -mfld v/regular CW decomp'n, the $g$ of every 1-cell has exactly two $O$ cells, and every $O$-cell of $M$ bounds wactly two 1-celk. Pf Read 5.26.
v. $\{v\}$ has $>2$ conn'd components, but
$v$ has a nhl $\cong \mathbb{R}$ \&

$$
v \text { has a nbhd } \cong \mathbb{R}^{\ell}
$$

Pf of THM Endow 1-mfld M with a I-dim regular CW dicomp. By lemma, $M$ is a graph in which each edge has 2 uss and every vex has deg 2. Thus we can (inductively) build $v x$, wadge bi-infinite sequences

$$
\left(v_{i}\right)_{i \in \mathbb{Z}},\left(e_{j}\right)_{j \in \mathbb{Z}} \text { s.t. } v_{j-1} \cdot e_{e_{j}} \cdot \overline{v_{j}{ }^{e}{ }^{2+1}} \cdot \quad \forall j \in \mathbb{Z} \text {. }
$$

For $n \in \mathbb{Z}$, let $F_{n}:[n-1, n] \xrightarrow{\cong} \bar{\varepsilon}_{n-1} \longmapsto v_{n-1}$ and glue to get $F: \mathbb{R} \longrightarrow M$.

$$
\begin{aligned}
n-1 & \longmapsto v_{n-1} \\
n & \longmapsto v_{n}
\end{aligned}
$$

Case 1 All vas $v_{n}$ are distinct. Then $\bar{e}_{m} n \bar{e}_{n} \neq \varnothing$ iff $m=n-1, n, n+1$ $\Rightarrow F_{\text {injective. }} B \subseteq M$ compact $\Rightarrow B \subseteq$ finite subcomplex $\Rightarrow F^{-1} B \subseteq[-c, c]$ so compact. Thus $F$ is proper, so in $F$ is closed. Since $M$ conn'd, suffices to show in $F$ open. Have $Y_{n}=\frac{e_{0}}{i_{n} e_{n+1}}$ open and $F((n-1, n+1))=Y_{n}$, so sim $F=\bigcup_{n} Y_{n}$ \& $M \cong \mathbb{R}$.
Case $2 v_{j}=V_{j+h}$ (chosen so that $k$ is the smallest such positive integer). Set $\hat{F}=\left.F\right|_{[j, j+h]}$. Check $\hat{F}$ is a quotient map. But the only identification is $\hat{F}(j)=\hat{F}(j+k)$.

This is the same identification as the quotient map $\begin{aligned} & G:[j, j+k] \longrightarrow 5^{\prime} \\ & t \longmapsto \exp (2 \pi i t / k), \text { so by uniqueness of quotients, } \\ & M \cong S^{\prime} \text {. }\end{aligned}$

Cor $A$ conn'd 1 -mild $\omega / \partial \neq \varnothing$ is $\cong[0,1]$ if compact, $[0, \infty)$ if not. Pf Let $M$ be such a mfld and $D(M)$ its double:


Since $D(M)$ is a $1 \mathrm{mff}\left(\mathrm{d}\right.$, it is $\cong S^{\prime}$ or $\mathbb{R}$, and $M$ is $\cong$ proper conn'd subspace of $D(M)$. If $D(M) \cong S^{\prime}$, choose $p \in D(M), M$ to get $M \hookrightarrow D(M) \backslash \mid p\} \cong \mathbb{R}$, so in both cases $M$ is $\cong$ conned subset of $\mathbb{R}$ containing $>1 \mathrm{pt}$, which is thus an interval.
closed bod interval $\Rightarrow M \equiv[0,1]$.

$$
0 / w[a, b),(a, b],(a, \infty),(-\infty, a] \text { all } \cong[0, \infty) \text {. }
$$

