$$
\Gamma(f):=\{(x, f(x)) \mid x \in U\} \subseteq U \times \mathbb{R}^{k}
$$

is a manifold homiomorphic to U (viz projection)

Note Injuctivity of $\pi=$ "vertical lime tart"

Products
For spaces X, Y, what topology should $X \times Y$ have?
(1) The product topology on $X \times Y$ is the topology generated by the basis $B=\{U \times V \mid U \leq X * v \subseteq Y$ open $\}$

So open sets in $X \times Y$ are unions of "product open sets".
Eng. The product topology on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ equals the Euclidean topology on \mathbb{R}^{2}

(2) The product topology is the coarsest topology s on $x \times y$ rit. both projection maps $\prod_{x}^{\pi_{x}} \quad \prod_{y}^{\pi_{y}}$ ane cts.

(3) The Given ct maps $X \stackrel{f}{\leftarrow} z \xrightarrow{q} y \quad \exists$! ats map $(f, g): z \rightarrow X \times y$ st. $\pi_{x} \cdot(f, g)=f, \pi_{y} \cdot(f, g)=g$.
exists unique

of The function $(f, g): z \longrightarrow x \times y$

$$
z \longmapsto(f(z), g(z))
$$

makes the diagram commute. If
$\pi_{x}(x, y)=f(z) \& \pi_{y}(x, y)=g(z)$, then

$$
x=f(z) \& \quad y=g(z)
$$

so this is the only such function. For continuity, it suffices to check $(f, j)^{-1}(u \times v)$ open for $U \subseteq X, v \subseteq Y$ open.

$$
=f^{-1} U \cap g^{-1} V
$$

Uniquenuss: moral exc / reading.

Slogan (continuous) functions into a product are determined by their (continuous) coordinate functions
Hare for $f: z \longrightarrow x, \times \cdots \times X_{n}, f_{i}:=\pi_{i}$ of is the isth word f_{n}.

$$
z \longmapsto\left(f(z), \ldots, f_{n}(z)\right.
$$

(See pp. 61-63 for more "productive" facts.)
TPS Is the product of manifolds M, N a manifold? Of what dimn?

$$
(p, q) \in M \times N \quad p \in U \cong \mathbb{R}^{d} \quad q \in V \cong \mathbb{R}^{e} \quad u \times V \subseteq M \times N
$$

E.g. The \underline{n}-torus is $T^{n}:=\underbrace{S^{1 \times \cdots \times S^{1}}}_{n \text { factors }}=\left(5^{\prime}\right)^{n}$.

Nite that $T^{2} \subseteq \mathbb{R}^{4}$, but we can still visualize it:

See 3.22 \& 3.36 for an explicit homeomorphism.
Infinite products
The product topology on $\prod_{\alpha \in A} X_{\alpha}$ has basis

$$
B:=\left\{\begin{array}{l|l}
\prod_{\alpha \in A} u_{\alpha} & \begin{array}{l}
\forall \alpha \in A, u_{\alpha} \leq X_{\alpha} \text { is open, } \\
\text { almost every }
\end{array} \\
\underbrace{}_{\text {all but finitely many }}=\chi_{\alpha}
\end{array}\right\}
$$

This satifies the correct universal property

$$
f_{\alpha} \int_{\forall_{\alpha} \prod_{\alpha \in A}^{z} x_{\alpha}}^{\vdots \downarrow^{\pi_{\alpha}}} \begin{aligned}
& i_{\alpha} \\
& x_{\alpha}
\end{aligned}
$$

Coproducts (disjoint unions)
Given an indexed family $\left\{X_{\alpha} \mid \alpha \in A\right\}$ of rets/spacus,

$$
\prod_{\alpha \in A} X_{\alpha}:=\left\{(x, \alpha) \mid \alpha \in A, x \in X_{\alpha}\right\} \text {. }
$$

For $\beta \in A$, have ${ }^{2} \beta: X_{\beta} \rightarrow \prod_{\alpha \in A} X_{\alpha}$

$$
x \longmapsto(x, \beta)
$$

(1) The coproduct topology on $\prod_{\alpha \in A} x_{\alpha}$ has open sets $U \subseteq \bigcup_{\alpha \in A} x_{\alpha}$ s.6. $U \cap X_{\alpha} \subseteq x_{\alpha}$ open $\forall_{\alpha} \in A$. I.e. $u=\prod_{\alpha \in A} u_{\alpha}$ for $u_{\alpha} \leq x_{\alpha}$ open.
(2) This is the finest topology on $\Perp x_{\alpha}$ st. c_{α} is ct $\forall \alpha \in A$.
(3) Th m

ie. if $\forall_{\alpha} \subset A, f_{\alpha}: x_{\alpha} \rightarrow y$ is ct, then \exists ! os $f: \underset{\alpha \in A}{ } \|_{\alpha} x_{\alpha} \rightarrow 4$ rit. $f l_{\alpha}=f_{\alpha} \quad \forall \alpha \in A$
This property characterizes $\Vdash_{\text {e }} X_{2}$.
Quotients
Recall that for X a set, an equivalence relation \sim on X is a reflexive $(x \sim x)$, symmetric $(x \sim y \Rightarrow y \sim x)$, transitive $(x \sim y \sim z \Rightarrow x \sim z)$ relation.

We will write $[x]=[x]_{\sim}=\{y \in X \mid y \sim x\}$ for the \sim-equivalence class of $x \in X$. The \sim-equivalence classes partition X and

$$
X / \sim:=\{\sim \text {-equivalence classes }\}=\{[x] \mid x \in X\}
$$

We have a surjection $\begin{aligned} q: & X \\ x & \longrightarrow X / \sim \text {, and } q^{-1}\{[x]\}=[x] .\end{aligned}$
Every surjective $f_{n} q: X \longrightarrow 5$ gives rise to an equivalence relation \sim on x, where $x \sim y \Leftrightarrow q(x)=q(y)$.

This induces a bijection

$$
\begin{aligned}
& s \longrightarrow X / \sim \\
& s \longmapsto q^{-1}\{s\}
\end{aligned}
$$

So, for a space X and surjective function $q: X \rightarrow S$, what topology should wa put on S?
(1) The quotient topology on S has open set $U \subseteq 5$ rit. $q^{-1} U$ is open in X.
(2) This is the finest topology on S sit. q is cts.

Egg. (a) $q:[0,1] \longrightarrow[0,1] / \underbrace{0 \sim_{1}}$
TPS Visualize
shorthand for
"the equivalwa relation. generated by 0~1"

$$
\left\{[x] \left\lvert\, 0 \leq x<\frac{1}{2}\right.\right\} .
$$

Is this open in $[0,1] / 0 \sim 1$?
(b)

$$
\begin{array}{r}
T^{2} \cong[0,1]^{2} /(0, y) \sim(1, y) \\
(x, 0) \sim(x, 1)
\end{array}
$$

(c) For $x, y \in \mathbb{R}$, define $x \sim y$ iff $x-y \in \mathbb{Z}$. Then $\mathbb{R} / \sim=\mathbb{R} / \mathbb{K}$ is a circle!
(d) For $A \subseteq X$ define $x^{\sim} y$ iff $x=y$ or $x, y \in A$. Write $X / A:=X / \sim$. This is X with "A collapsed to a point."
(i) The cone on X is

$$
C X:=X \times[0,1] / X \times\{0\}
$$

$$
x \gg \sum_{x \times[0,1]}^{-} \leadsto V_{c x}
$$

