PF of (c) Let B be a countable basis of X and U an open cover of X. Define $B^{\prime}:=\{B \in B \mid B \subseteq U$ for some $U \in U\}$; it's countable.
For $B \in B^{\prime}$, choose $U_{B} \in U$ sit. $B \subseteq U_{B}$. Thin $U^{\prime}=\left\{U_{B} \mid B \in \oiint^{\prime}\right\} \subseteq U$ is countable.
WIS u^{\prime} covers X. For $x \in X$, know $x \in U_{0}$ for some $U_{0} \in U$. Since B is a basis, $\exists B \in B$ rit. $x \in B \leq U_{0}$. Thus $B \in B^{\prime}$ and $U_{B} \in U^{\prime}$ with
$x \in B \in U_{B}$. This shows U^{\prime} is a cover.

$$
5 \cdot \bar{x} \cdot 22
$$

Manifolds A space M is locally Euclidean of dimension n when any of the following equivalent conditions holds:

- every pt of M has a nbhd in M homeomorphic to an open subset of \mathbb{R}^{n}
\qquad -" open ball in \mathbb{R}^{n} \mathbb{R}^{n}

An n-dimeusional topological manifold is a

- second countable
- Hausdorff space that is
- locally Euclidean of dimension n.

Egg. \mathbb{R}^{n}, open subsets of manifolds,

Non-R.g: $\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z^{2}\right\}
$$

$\mathbb{H}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n} \geqslant 0\right\}$ is the closed n-dimensional upper half space.

An n-dimensional manifold with boundary is a second countable Hausdorff space in which every pt has a nbhd $\cong \mathbb{R}^{n}$ or \mathbb{H}^{n}.
Eng.
 If p has a nbhd $\cong \mathbb{R}^{n}$ it's called an interior point. If p has a nbhd $\equiv \mathbb{H}^{n}$ it's a boundary point. $\cong \mathbb{R}^{n}$

Prop The collection of interior pts is an n-mavifold, and

$$
\left.\partial M:=\{\text { boundary pts }\} \text { is an }(n-1) \text {-manifold. (b/c } \partial H^{n} \cong \mathbb{R}^{n-1}\right)
$$

so 5^{\prime} is a 1 -manifold

Now spacer from old
Goal Put "natural" topologies on subsets, products, quotients, etc.
Three n characterizations
(1) Classical definition (explicit, by fiat).
(2) Coarsest/finust topology suck that maps into/out of the space are cts.
(3) Universal property (justifies (1))

Defn Given topologies $T \subseteq T^{\prime}$ on X call T^{\prime} finer and T coarser.

"broken into smaller pincus, like finer pilfer grounds
offer

Subspaces
, space
Given $5 \subseteq X$ an arbitrary subset, what topology do we pet on it?
(1) The subspace topology on S is

$$
T_{s}:=\{u \leq 5 / u=5 n V \text { for some } V \leq X \text { open }\} \text {. }
$$

 $u=\int$ is open in 5
(2) Prop T_{5} is the coarsest topology on 5 such that iota
$\iota: S \hookrightarrow X$ is continuous.
If Suppose $:(S, T) \hookrightarrow X$ is cts. Then $\forall V \subseteq X$ open, $L^{-1} V=5 \cap V \in T$. Thus $T_{s} \subseteq T$. Now check $T^{\prime} £ T$ $\Longrightarrow \quad \because\left(5, T^{\prime}\right) \hookrightarrow X$ is not cts.
(3) The For X a space and $S \subseteq X$ a subspace, a map $f: Y \longrightarrow S$ is cts iff if: $Y \rightarrow X$ is cts:

If $(\Rightarrow) l$ is cts \& composition

preserves continuity.
$\Leftrightarrow)$ For $U \subseteq S$ open, $u=v \cap S$ for some $v \subseteq X$ open. By continuity of if, $(i f)^{-1} V=f^{-1}\left(L^{-1} V\right)=f^{-1} U$ is open. Since U was arbitrary, f is cts.
Cor For $f: x \rightarrow y$ cts, $s f_{s}$ cts where the domain of
 reach \hookrightarrow has subspace topology.

The Suppose S is a subset of a space X. The subspace topology on 5 is the unique topology satisfying the universal property.

If Write S_{5} for $S \mathrm{w} /$ subspace top, S_{g} for S_{W} some top satisfying by abstract the univ prop. Suffices to show id $s_{s}: S_{s} \rightarrow S_{g}$ is a homeomorphism. nonsense! Consider the diagrams

By the univ property it suffices to show 1 is cts in each case. We already chucked that S_{5} is the coarsest topology s.t. $1: \mathrm{S}_{5} \longrightarrow X$ is cts. W he have that $i \mathrm{~S}_{g} \hookrightarrow x$ is cts
 id $: S_{g} \rightarrow S_{g}$ is necessarily cts.

Hence ids: $S_{s} \rightleftarrows S_{g}$ id d_{s} are both ct.
space
For $S \subseteq X$ call a top T on S a subspace topology
1 subset
when $\forall f: y \rightarrow S$ function,

Embeddings
A cts $f_{n} f: A \rightarrow X$ is an embedding when it is a homeomorphism onto its image $f A \subseteq X$ w/ the subspace topology.
Prop A cts injective map that is either open or closed is an embedding.
If Reading / exercise
Prop Hausdorff, first/sacond countable propertius an praservid under taking subspaces.
Since \mathbb{R}^{n} is Hausdorff $\propto 2^{\text {nd }}$ countable, any locally Euclidean space which embeds in some \mathbb{R}^{n} is a manifold.
(Fact Every manifold embeds in some \mathbb{R}^{n}.) Cf. Whitney embedding
Big. If $u \subseteq \mathbb{R}^{n}$ is open and $f: u \rightarrow \mathbb{R}^{k}$ is cts,
thin the graph of f

$$
\Gamma(f):=\{(x, f(x)) \mid x \in U\} \subseteq U \times \mathbb{R}^{k}
$$

is a manifold homiomorphic to U (viz projection)

Note Injuctivity of $\pi=$ "vertical lime tart"

Products
For spaces X, Y, what topology should $X \times Y$ have?
(1) The product topology on $X \times Y$ is the topology generated by the basis $B=\{U \times V \mid U \leq X * v \subseteq Y$ open $\}$

