Discussion
(1) Assessment \& self-assersment

Goal: assess competence w/ learning objectives

$$
\text { required }\left\{\begin{array}{l}
\text { - weekly HW + revisions } \\
\text { - take-home midterm + revision } \\
\text { - final oral exam }
\end{array}\right.
$$

(2) Joint expectations

Make space \forall to contribute \exists differences listen
Compassionate communication checking in w/ partners

- Alternative/supplementa (:
- paper/presentation (potentiall yo collaborative)
- presenting HW solis

Q Weighting of objectives?
Respect
Be present \& ready, collaborate
Encourage mathematical risk taking/vulnerability
\int Celebrate mistakes

Welcome Survey

Have you taken a point-set topology course previously?

19 responses
$15(78.9 \%) \quad$ Yes

- I took an intro to topology class, but I don't know what the descriptor "pointset" precisely means / if it covered enough (it was a well done online wt virtual learning mean a lot of things were slower than "typical")
63.2\%

What kind of student are you?
19 responses

- Math grad student

Grad student in another subject
Math undergrad
Undergrad in another subject
ACCESS student auditing class (BS Physics Caltech 1979)C Do you feel like you have an intuitive sense of what a (topological or smooth) manifold is?
19 responses

- Yes

- I think I have a vague one, but it's more picked up from context clues from other math talks than a solid definition

Have you previously seen the definition of a topology (in terms of a set and open subsets satisfying axioms) in a course setting?

19 responses

Have you taken an algebra course that included the study of abstract groups (including normal subgroups, quotients, and group actions)?
19 responses

- Yes
No
We just barely touched on it but I don't feel confident about it
- No, but I have learned about all of those things from independent reading.

Problem session Tuesdays 13:00-14:00
Kyle's drop in hours Thursdays 15:00-16:00

$$
Q \otimes \underline{A}
$$

Internet: Don't hunt for sol'ns; no Internet on the midterm Final: Conursu with me about topology problems
Differential geometry: Riemannian metries start in 546

Topological Spaces
X a set, $2^{x}:=\{A \mid A \subseteq X\}$ its power set
A topology on X is $T \subseteq 2^{X}$ rit.
(i) $X, \varnothing \in T$
(ii) T is closed under pairwise (and hence finite) intersections:

$$
u, v \in T \Rightarrow u \cap v \in T
$$

(iii) T is closed under arbitrary unions:

$$
\left\{u_{\alpha} \mid \alpha \in S\right\} \subseteq \tau \Longrightarrow \bigcup_{\alpha \in S} u_{\alpha} \in T .
$$

- (X, T) is a topological space
- For $U \in \sigma, X \backslash U$ called
- $U \in T$ called open subsets of X closed
- $x \in X$ a point of $X \quad . p \in U \in T$ neighborhood of p

Eng. (1) $\left(x, 2^{x}\right)=$ discrete topology
(2) $(X,\{\varnothing, X\})=$ trivial topology s
(3) For (M, d) a metric space, unions of open balls $B(x, \varepsilon)=\{y \in M \mid d(x, y)<\varepsilon\}$ form the metric topology on M.
(a) Euclidean topology on \mathbb{R}^{n}
(b) Similarly for unit interval $I=[0,1]$, open unit ball $\mathbb{B}^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid<1\right\} \subseteq \mathbb{R}^{n}$, closed unit ball $\bar{B}^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\} \leq \mathbb{R}^{n}$, $d: M \times M \rightarrow \mathbb{R}$ sit. $\forall x, y, z \in M$,
(1) $d(x, x)=0$
(2) $x \neq y \Rightarrow d(x, y)>0$
(3) $d(x, y)=d(y, x)$
(4) $d(x, z) \leq$ $d(x, y)+d(y, z)$ $\sum_{x=d(x, y) y}^{d(x, z)} d(y, z)$ unit circle $5^{1}:=\left\{x \in \mathbb{R}^{2}| | x \mid=1\right\} \subseteq \mathbb{R}^{2}$, unit sphere $5^{n}:=\left\{x \in \mathbb{R}^{n+1}| | x \mid=1\right\} \subseteq \mathbb{R}^{n+1}$.

TP5 (Think-Pair-Share) Describe \mathbb{R}_{11}° and 5°.

Eng $=(4) u \leq X$ open in the wfinite topology ff $|X, u|<\infty$ or $u=\varnothing$
(5) For a commutative unital ring $R, \operatorname{spec} R:=\{p \leq R \mid p$ prime $\}$ deal $\}$.

Define Zariski closed subsets of R to be, for $I \subseteq R$ an ideal,

$$
V(I):=\{p \in \operatorname{Spec} R \mid p \geq I\}
$$

Note Can specify a topology on X by closed sets as long as

- X, \varnothing closed
- finite unions of closed setts are closed
- arbitrary intersections of closed sets are closed.
(Hint: Da Morgan's Laws.)

Fix a topological space X. Now leaving T implicit.
For $A \subseteq X$, the closure of A in X is
$\bar{A}:=\bigcap_{A \subseteq B \subseteq X} B=$ smallest closed set containing A.

$$
A \subseteq B \subseteq X
$$

$$
\begin{aligned}
& A \subseteq B=X \\
& B \text { closed }
\end{aligned}
$$

The interior of A in X is
Int $A=A^{\circ}:=\bigcup_{U \subseteq A} U=$ largest open set contained by A u open

The exterior of A is Ext $A:=X \backslash \bar{A}$ and its boundary is

$$
\partial A:=X-\left(A^{0} \cup E x t A\right)
$$

See Prop 2.8 for important properties of $\overline{(}),()^{\circ}$, Ext, 2 .
Aside You can also specify a topology on X via a closura operator $c: 2^{x} \longrightarrow 2^{x}$ satisfying
(1) $c(\varnothing)=\varnothing$
(2) $\forall A \subseteq X, A \leq c(A)$
(3) $\forall A \subseteq X, c(A)=c(c(A))$
(4) $\forall A, B \in X, c(A \cup B)=c(A) \cup c(B)$

Logic of a topological space? Interior = necessity, closure ipossibility models " 54 modal logic."

- For $A \leq X, p \in X$ is a limit (or accumulation or cluster) point of A when every neighborhood of p contains a pint of A other than $p: \forall u \leq X$ open with $p \in U, U \cap(A,\{p\}) \neq \varnothing$.
E.g.

O is a limit point of $H=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z} \geq 1\right\} \subseteq \mathbb{R}$ but $\frac{1}{2}$ is not.

- A print $p \in X$ is an isolated point of A if \exists nbhd U of p s.t. $\quad A \cap U=\{p\}$

Gig: icici isolated, $\frac{1}{n}$ is an isolated point of $H \quad \forall n \geqslant 1$

- A subset $A \subseteq X$ is dense in X when $\bar{A}=X$. E.g. $\quad Q \subset \mathbb{R}$.

Probing spaces with sequences and maps
A sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ in X converges to $x \in X$ when \forall nhl U of $x, \exists N \in \mathbb{N}$ sit. $\forall i \geq N, x_{i} \in U$.
$N=8$ works for this U
Write $x_{i} \rightarrow x$ ir

$$
\lim _{i \rightarrow \infty} x_{i}=x
$$

A function $f: x \rightarrow y$ between topological spaces is continuous when $\forall U \subseteq Y$ open, $f^{-1} U:=\{x \in X \mid f(x) \in U\} \subseteq X$ is open.

