MATH 544: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 4

Problems taken from *Introduction to Topological Manifolds* are marked ITM x-y. Please review the syllabus for expectations and policies regarding homework.

Problem 1 (ITM 4–1,2). Show that for n > 1, \mathbb{R}^n is not homeomorphic to any open subset of \mathbb{R} . [*Hint*: if $U \subseteq \mathbb{R}$ is open and $x \in U$, then $U \setminus \{x\}$ is not connected.] Use this to prove that a nonempty topological space cannot be both a 1-manifold and an *n*-manifold for some n > 1.

Problem 2 (ITM 4–15). Suppose that *G* is a topological group.

- (a) Show that every open subgroup of *G* is also closed.
- (b) For any neighborhood U of 1, show that the subgroup $\langle U \rangle$ generated by U is open and closed in G.
- (c) For any connected subset $U \subseteq G$ containing 1, show that $\langle U \rangle$ is connected.
- (d) Show that if G is connected, then every connected neighborhood of 1 generates G.

Problem 3 (ITM 4–18). Let M_1 and M_2 be *n*-manifolds. For i = 1, 2, let $B_i \subseteq M_i$ be regular coordinate balls, and let $M'_i = M_i \setminus B_i$. Choose a homeomorphism $f : \partial M'_2 \to \partial M'_1$. (You may assume that $\partial M'_i \cong S^{n-1}$ for i = 1, 2 and thus such an f exists.) Let $M_1 \# M_2$ (called the *connected sum* of M_1 and M_2) be the adjunction space $M'_1 \cup_f M'_2$.

- (a) Show that $M_1 \# M_2$ is an *n*-manifold (without boundary).
- (b) Show that if M_1 and M_2 are connected and n > 1, then $M_1 \# M_2$ is connected. (Is this also true for n = 1?)
- (c) Show that if M_1 and M_2 are compact, then $M_1 \# M_2$ is compact.

Problem 4 (ITM 4–13). Let *X* be a locally compact Hausdorff space. The *one-point compactification* of *X* is the topological space X^* defined as follows: For ∞ some object not in *X*, let $X^* = X \amalg \{\infty\}$ with the following topology \mathscr{T} consisting of open subsets of *X* along with $U \subseteq X^*$ such that $X^* \setminus U$ is a compact subset of *X*.

- (a) Show that \mathscr{T} is a topology.
- (b) Show that X^* is a compact Hausdorff space.
- (c) Use stereographic projection to show that $S^n \cong (\mathbb{R}^n)^*$.
- (d) Show that X is open in X^* and has the subspace topology.
- (e) Show that X is dense in X^* if and only if X is noncompact.

Problem 5. Let *X* be a metric space with metric *d*. Given $x \in X$ and nonempty $A \subseteq X$, define

$$d(x, A) := \inf\{d(x, a) \mid a \in A\}.$$

Give a direct proof of Urysohn's lemma for metric spaces by considering the function

$$f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}$$