MATH 544: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 3

Problems taken from *Introduction to Topological Manifolds* are marked ITM x-y. Please review the syllabus for expectations and policies regarding homework. In addition to these problems, I recommend working out ITM 3–22 and 3–23 as well.

Problem 1 (ITM 3–13). Suppose *X* and *Y* are topological spaces and $f: X \to Y$ is a continuous map. Prove the following:

- (a) If *f* admits a continuous left inverse, it is a topological embedding.
- (b) If *f* admits a continuous right inverse, it is a quotient map.
- (c) Give examples of a topological embedding with no continuous left inverse, and a quotient map with no continuous right inverse.

Problem 2 (ITM 3–14). Show that real projective space \mathbb{RP}^n is an *n*-manifold. [*Hint*: Consider the subsets $U_i \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ with $x_i = 1$.]

Problem 3. Let H^n denote the upper *n*-hemisphere

$$H^{n} := \{ (x_{1}, \dots, x_{n+1}) \in S^{n} \mid x_{n+1} > 0 \}$$

and let \bar{H}^n denote its closure.

- (a) Prove that H^n is homeomorphic to \mathbb{R}^n .
- (b) Prove that \mathbb{RP}^n is homeomorphic to \bar{H}^n/\sim where \sim is the equivalence relation identifying antipodal points on $\partial \bar{H}^n \cong S^{n-1}$.
- (c) Conclude that $\mathbb{RP}^n \cong \mathbb{R}^n \cup \mathbb{RP}^{n-1}$ and thus by induction

$$\mathbb{RP}^n \cong \mathbb{R}^n \cup \mathbb{R}^{n-1} \cup \dots \cup \mathbb{R}^1 \cup \mathbb{R}^0.$$

Problem 4 (ITM 3–16). Let X be the subset $(\mathbb{R} \times \{0\}) \cup (\mathbb{R} \times \{1\}) \subseteq \mathbb{R}^2$. Define an equivalence relation on X by declaring $(x,0) \sim (x,1)$ for $x \neq 0$. Show that the quotient space X/\sim is locally Euclidean and second countable but not Hausdorff. (This space is called the *line with two origins.*)

Problem 5 (ITM 3–24). Consider the action of O(n) on \mathbb{R}^n by matrix multiplication as in Example 3.88(b). Prove that the quotient space $\mathbb{R}^n/O(n)$ is homeomorphic to $[0, \infty)$.