MATH 544: TOPOLOGY HOMEWORK DUE FRIDAY WEEK 2

Problems taken from Introduction to Topological Manifolds are marked ITM $x-y$. Please review the syllabus for expectations and policies regarding homework.
Problem 1 (ITM 2-5). For each of the following properties, give an example of consisting of two subsets $X, Y \subseteq \mathbb{R}^{2}$, both considered as subspaces of the Euclidean plane, together with a map $f: X \rightarrow Y$ that has the indicated property. (No justifications required.)
(a) The map f is open but neither closed nor continuous.
(b) The map f is closed but neither open nor continuous.
(c) The map f is continuous but neither open nor closed.
(d) The map f is continuous and open but not closed.
(e) The map f is continuous and closed but not open.
(f) The map f is open and closed but not continuous.

Problem 2 (ITM 2-7). Prove Proposition 2.39: In a Hausdorff space, every neighborhood of a limit point contains infinitely many points of the set.

Problem 3 (ITM 2-10). Suppose $f, g: X \rightarrow Y$ are continuous maps and Y is Hausdorff. Show that the equalizer of f and g,

$$
\operatorname{eq}(f, g):=\{x \in X \mid f(x)=g(x)\}
$$

is closed in X. Give a counterexample if Y is not Hausdorff.
Problem 4 (ITM 2-14). Prove Lemma 2.48: Suppose X is a first countable space, A is any subset of X, and x is any point of X.
(a) A point $x \in \bar{A}$ if and only if x is a limit of a sequence of points in A.
(b) A point $x \in \operatorname{Int} A$ if and only if every sequence in X converging to x is eventually in A.
(c) The set A is closed in X if and only if A contains every limit of every convergent sequence of points in A.
(d) The set A is open in X if and only if every sequence in X converging to a point in A is eventually in A.

Problem 5 (ITM 2-19). Let X be a topological space and let \mathscr{U} be an open cover of X.
(a) Suppose we are given a basis for each $U \in \mathscr{U}$ (when considered as a topological space in its own right via the subspace topology). Show that the union of all these bases is a basis for X.
(b) Show that if \mathscr{U} is countable and each $U \in \mathscr{U}$ is second countable, then X is second countable.

