MATH 411: TOPICS IN ADVANCED ANALYSIS HOMEWORK DUE WEDNESDAY WEEK 11

Problem 1. Suppose A is an LCA group and $f \in L^1_{bc}(A)$. Recall that for $s \in A$, $L_s f \in L^1_{bc}(A)$ is the function given by

$$L_s f(x) = f(s^{-1}x).$$

Find a nice formula for $\widehat{L_sf}$ and prove that it is true.

Problem 2. Let $S=[a_1,b_1]\times\cdots\times[a_d,b_d]\subseteq\mathbb{R}^d$ and let 1_S denote its characteristic function. Compute $\widehat{1_S}$.

Problem 3. Suppose $M: \mathbb{R}^d \to \mathbb{R}^d$ is a linear transformation, and $f \in L^1(\mathbb{R}^d)$. Prove that $\widehat{f \circ M}$ is given by

$$\widehat{f \circ M}(\xi) = \frac{1}{|\det M|} \widehat{f}(M^{-\top}\xi)$$

where $M^{-\top}$ denotes the inverse transpose of M.

Problem 4. Suppose $\Delta \subseteq \mathbb{R}^2$ is a (solid) triangle with vertices in \mathbb{Z}^2 . Show that the following properties are equivalent:

- (a) Δ contains no other points of \mathbb{Z}^2 (in its interior or boundary),
- (b) the area of Δ is 1/2,
- (c) Δ is **unimodular**, *i.e.*, $v_3 v_1$ and $v_2 v_1$ form a basis for \mathbb{Z}^2 .

Hint: You might want to "double" the triangle to form a parallelogram.