MATH 411: TOPICS IN ADVANCED ANALYSIS HOMEWORK DUE WEDNESDAY WEEK 9

Problem 1. Suppose that A is an LCA group. Recall that the topology on \hat{A} has subbasis consisting of sets

$$P(K,U) = \{ \chi \in \hat{A} \mid \chi(K) \subseteq U \}$$

where $K \subseteq A$ is compact and $U \subseteq S^1$ is open. Let $U = e^{2\pi i(-1/4,1/4)}$ and show that for K any compact neighborhood of $e \in A$, the set $\overline{P(K,U)}$ is a compact neighborhood of $1 \in \hat{A}$. (It follows that \hat{A} is locally compact, but you don't need to prove this here.)

Problem 2. Fix a prime p and give the Prüfer p-group

$$\mu_{p^{\infty}} := \{ z \in S^1 \mid z^{p^n} = 1 \text{ for some } n \in \mathbb{N} \}$$

the subspace topology induced by the standard topology on S^1 . We will write $\mu_{p^{\infty}}^{\text{sub}}$ for this topological group to remind ourselves that this not the discrete topology with which we normally endow $\mu_{p^{\infty}}$.

(a) Prove that $\mu_{p\infty}^{\text{sub}}$ is a dense subspace of S^1 .

- (b) Use (a) to prove that $\mu_{p^{\infty}}^{\text{sub}} \cong \mathbb{Z}$.
- (c) We have observed that $\hat{\mathbb{Z}} \cong S^1$, so we now know that

$$\widehat{\widehat{\mu_{p^\infty}^{\mathrm{sub}}}} \cong S^1$$

which is not isomorphic to $\mu_{p^{\infty}}^{\text{sub}}$. Why does this not contradict Pontryagin duality?

Problem 3. For $j \in \mathbb{N}$, let A_j be a nontrivial compact Abelian group, and let $A = \prod_{j \in \mathbb{N}} A_j$. Suppose the topology on A_j is induced a metric d_j such that A_j has diameter 1. Define

$$d: A \times A \longrightarrow \mathbb{R}_{\geq 0}$$
$$(x, y) \longmapsto \sum_{j \in \mathbb{N}} \frac{d_j(x_j, y_j)}{2^j}.$$

- (a) Show that d(x, y) defines a metric on A that makes A a compact LCA group.
- (b) Show that for each $j \in \mathbb{N}$, the projection $A \to A_j$ is a continuous group homomorphism.

(c) Show that if each A_i is finite, then every continuous group homomorphism $\mathbb{R} \to A$ is trivial.

Problem 4. For $j \in \mathbb{N}$, let A_j be a compact Abelian group. Suppose that for i < j there is a continuous group homomorphism $\varphi_i^j \colon A_j \to A_i$. Suppose that for i < k < j,

$$\varphi_i^k \circ \varphi_k^j = \varphi_i^j.$$

Let $\lim_{j \to j} A_j$ be the set of all $x \in \prod_{j \to j} A_j$ such that for all i < j, $\varphi_i^j(x_j) = x_i$.

- (a) Show that $\lim A_j$ is a closed subgroup of $\prod_i A_j$. This group is called the *limit* of the A_j .
- (b) Show that the projections induce continuous group homomorphisms

$$p_i \colon \lim A_i \longrightarrow A_i$$

for $i \in \mathbb{N}$ that satisfy $\varphi_i^k \circ p_k = p_i$ whenever k > i.

(c) Suppose there is a compact Abelian group A and a sequence of continuous group homomorphism $q_i: A \to A_i$ such that $\varphi_i^k \circ q_k = q_i$ for all k > i. Show there is a unique continuous group homomorphism $\alpha: A \to \lim_i A_i$ such that for each i,

$$p_i \circ \alpha = q_i.$$

This is the *universal property* of $\lim_{j} A_{j}$.

Problem 5. Read Exercise 5.22 from Deitmar's book or Section 3.1 of Riehl's Category theory in context to familiarize yourself with colimits (which Deitmar calls direct limits and denotes \varinjlim). Let (A_j, φ_i^j) be a directed system of compact Abelian groups, and let (B_j, ψ_i^j) be a codirected system of discrete Abelian groups. Prove one (or both) of the following statements. (a)

(b)
$$\widehat{\lim A_j} \cong \operatorname{colim} \widehat{A_j}$$
$$\widehat{\operatorname{colim} B_j} \cong \lim_j \widehat{B_j}$$