MATH 411: TOPICS IN ADVANCED ANALYSIS HOMEWORK DUE WEDNESDAY WEEK 2

Make sure to review the homework instructions in the syllabus before writing your solutions. In particular, show your work and write in complete sentences (but also aim for concise explanations).

Problem 1. A function $f : \mathbb{R} \to \mathbb{C}$ is **1-periodic** when for all $x \in \mathbb{R}$, f(x+1) = f(x). Given a real number κ , define

$$e_{\kappa} \colon \mathbb{R} \longrightarrow \mathbb{C}$$
$$x \longmapsto e^{2\pi i \kappa x}.$$

For which values of κ is e_{κ} 1-periodic, and for which is it not? Prove your assertion.

Problem 2. For this question only, do not worry about whether infinite sums converge.

(a) Given $c: \mathbb{Z} \to \mathbb{C}$ and $c_k := c(k)$, show that

$$\sum_{k \in \mathbb{Z}} c_k e_k(x) = \frac{a_0}{2} + \sum_{n \ge 1} a_n \cos(2\pi nx) + \sum_{n \ge 1} b_n \sin(2\pi nx)$$

for some $a \colon \mathbb{N} \to \mathbb{C}$ and $b \colon \mathbb{Z}_{\geq 1} \to \mathbb{C}$. Your answer should include an expression for c_k in terms of a_n 's and b_n 's.

(b) Suppose $f \colon \mathbb{R} \to \mathbb{C}$ is 1-periodic and integrable over [0,1]. For $k \in \mathbb{Z}$, set

$$c_k := \int_0^1 f(x) e_{-k}(x) \, dx$$

and for $n \in \mathbb{N}$, set

$$a_n := 2 \int_0^1 f(x) \cos(2\pi nx) \, dx$$
$$b_n := 2 \int_0^1 f(x) \sin(2\pi nx) \, dx.$$

Show that a, b, c satisfy the equations from part (a).

Problem 3. Prove that for all $m, n \in \mathbb{Z}$,

$$\int_0^1 e_m(x)\overline{e_n(x)} \, dx = \begin{cases} 1 & \text{if } m = n, \\ 0 & \text{otherwise} \end{cases}$$

What does this say about the set $\{e_n \mid n \in \mathbb{Z}\}$ in the language of inner product spaces?

Problem 4. Show that there is no continuous function $\delta : [-1/2, 1/2] \to \mathbb{R}$ with the following property: for all continuous functions $f : [-1/2, 1/2] \to \mathbb{R}$,

$$\int_{-1/2}^{1/2} f(x)\delta(x) \, dx = f(0)$$

Instructor's note: This shows that a continuous 'delta function' does not exist, and indicates we may need to broaden our notion of function in order to access such behavior. This leads to the notion of a *distribution*.

Problem 5. Show that the standard sesquilinear form \langle , \rangle is *not* positive definite on the \mathbb{C} -vector space of Riemann integrable functions $[0, 1] \to \mathbb{C}$.