Sums of two squares

Thu If p is a prime such that $p \equiv 1 \pmod{4}$, then $p = a^2 + b^2$ for some positive integers a, b.

E.g.
$$5 = 1^2 + 2^2$$
, $13 = 2^2 + 3^2$, $17 = 1^2 + 4^2$, $29 = 2^2 + 5^2$, etc.

Q What is p=3 (mod 4)?

$$p=2=|^{2}+|^{2}$$
 In fact, if $p=3$ (4), thun $\forall a,b\in\mathbb{Z}_{>0}$,

 $p=3\neq a^{2}+b^{2}$
 $p=7\neq a^{2}+b^{2}$
 $\Rightarrow a^{2}+b^{2}\equiv 0,1, \text{ or } 2\pmod{4}$

Lemma For any frime p=1 (mod 4), there exists me I such that -1 = m2 (mod p) Pf We are looking for a primitive 4th root of unity in 74/p7. We have (74/p72) * eyelie of order p-1, and 4/p-1, so there is indeed a subgroup of order 4 in (2/pZ) and we can take in to be a generator. □ G ≤ (Z/pZ), G ≧ C4 $\langle x \rangle = \{1, x, x^2, \chi^1\}$

Pf of Thm Fix a prime $p \equiv 1 \pmod{4}$ and $k \in \mathbb{Z}$ such that $-1 \equiv k^2 \pmod{p}$. Set $\chi = \binom{k}{k} \binom{0}{p} \mathbb{Z}^2$ so that $\det \chi = p$.

Consider the convex centrally symmetric body
$$B = \{x \in \mathbb{R}^2 \mid \|x\| \leq \sqrt{2p} \}$$
of volume $2p\pi$. Then vol $B > 2^2 \det L$ holds
because $2p\pi > 4p$ (indeed $2\pi > 4$)

To by Mikowskii convex body theorem,
$$B \cap (L \cap D) \ni (a,b)$$

Then
$$\exists m, n \in \mathbb{Z}$$
 s.t. $\binom{a}{b} = \binom{n}{k} \binom{m}{n} = \binom{m}{mk+np}$
and $a^2 + b^2 = m^2 + (mk+np)^2 = m^2(1+k^2) = 0 \pmod{p}$

I.e.
$$p | a^2 + b^2$$
. Finally, since $(a,b) \in B^\circ$, we also have $a^2 + b^2 < 2p \implies p = a^2 + b^2$. \square

