Henceforth, A is a locally compact Hansdorff topological group; shorthand LCA group (the H is silent) Dofn The Pontryagin duel of A 5 $\mathbb{C}^{\times} = \operatorname{Gl}_{1}\mathbb{C}$ $2_{1} = N'(\epsilon)$ $\hat{A} := Hom(A, S')$ the group of unitary characturs of A under pointwise multiplication. We endow \hat{A} with the compact open topology: the coarsest topology with opens $P(K, U) := \{ x \in \hat{A} \mid x K \subseteq U \}$ for all K=A compact, USS' open.

Note Opens of \hat{A} = unions of finite intersections of $P(K_i, U_i)$. E.g. S' = Z w/ discrete topology R = R W/ standard topology $\hat{A} \cong A$ for A finite discrete. Prop If A is an LCA group, then is an LCA group. For local compactness PF Suffices to show 1 € Â has a conspact neighborhood.

Let K be a compact norm of e in A, $U := e^{2\pi i (-1/4)}$	
Claim P(K,U) is a compact nobul of 1 & Â	
T. HW.	
Why is Hausdorff?	
Suffices to show $11 \leq A$ closed $\iff \hat{A} \cdot 1$ open. But $\chi \neq 1 \Rightarrow \chi(a) \neq 1$ for some $a \in A \setminus e$.	
Let $U = S' \setminus 1$. Then $x \in P(\{a\}, U)$ but $1 \notin P(\{a\}, U)$. Thus $\widehat{A} \setminus 1 = \bigcup P(\{a\}, U)$ is open, as desired. $a \neq e$	

Finally, we need to show multiplication, inversion are continuous. We can do this all together by proving fi Å * Å - A is its. (Why?) Moral exc: can be checked (x, y) ~> xy⁻¹ by showing Xi, Ii Inc unip X, 1 = 1 = Xi); = Inc Xy unif The For A an LCA group, A discrete => A compact every subset is open is all singletons open PF First suppose A compact. Then $\forall U \in S'$ open, $P(A, U) \in \hat{A}$ is open. For $U = e^{2\pi i (-1/2, 1/2)}$, $P(A, U) = \{1\}$, so $\{1\}$ is open $\Rightarrow \{x\}$ open $Y_{k} \in \hat{A}$. Thus \hat{A} is discrete $Y_{k} \in \hat{A}$. Thus \hat{A} is discrete 1 XGN &U

Nord suppose A is							discrete. Idea:								Use a compact exhaustion										en.						
			ŏf	² A	[fo	she	574	A		is	Ċ	n,	nt.	ab1	le :	Į,	\M	•]	pro	VI-	· ·	Â	<u>ج</u> ک	yu	en	k :	al	ly	—	
			. C	om	pac	2 + -		Ľ	1																				• V		
			T	hm	, . (Po	nte	y a	gì		d	na	it	, 1)		Fa	بر م	A	a.	. l	, C	A	gr		۰ ۲ ۲						
							' 	י ע ע	Val		Â	· ·	.0 	- / /																	
				 . 15.	an	. í	58 M	or p	his	m	. 6	f	Ļ	CA)	g	rov	.ps.														
								•																							

Functoriality Write LCA for the category of LCA gps + cts gp homomorphisms. · composition = composition of functions is associative · identity (1 = LCA(-, 5'): LCA -> LCA⁹⁹ A f > B A J, B A A x-f $f^*\chi$, χ f↓ / f*1 ↑ satisfies id = ida and (gof)* = f* og* $(g\cdot f)^*(x) = \chi \cdot (g \cdot f) = (\chi \cdot g) \cdot f = f^*(g^*x)$ Claim () is an aquivalence of categories.

F: C -> D is an equiv of cats When JG. D -> C s.t. x: G.F => id and p: F.G => id. GFc = c For (): LCA ~ LCA? need () = id LCA A - wal A - wal LCA? f GFf C f f J B - wat & f(a) - evalpia) B - f & A n $GFc' \xrightarrow{\mu} c'$ $f_{**}\left(\begin{array}{c}1\\3\\2\end{array}\right) = x \cdot f_{*} \quad f_{*}$ $\mathcal{X}(\eta f)$ zenda = (n ·f) (a) =η(fla) E.g. Consider A=mp= = {ZES' | Z^p=1 for some nEN} = eveloped (This is the Prüfer group. What topology shall we give it? - w/ discrete top?

* pp c> pp c> pp c> pp c> with union = colomit 10 poo: pour = colim jupn Hit * with 🕥 : $\hat{\mu_{p}} \leftarrow \hat{\mu_{p^{2}}} \leftarrow \hat{\mu_{p^{3}}} \leftarrow \cdots$. . **X?** $\mathbb{Z}_{p2} \leftarrow \mathbb{Z}_{p^2} \mathbb{Z} \leftarrow \mathbb{Z}_{p^2} \mathbb{Z} \leftarrow \cdots$

Fact Representable functors take colimits to limits so $M_{poo} = Lolim \mu_{pn} = \lim_{n} \mu_{pn} = \lim_{n} \frac{\pi}{p_n Z} = \mathbb{Z}_p$ p-adic integers. E. Richl Category Thury in Context