FiA-G st. Elfalle < as automatic since A faite $p^{2}(A) = \mathbb{C}^{A}$ contains all characters — inner prod space via $\sum_{i=1}^{n} \frac{f_{i}^{2}A}{f_{i}^{2}A} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}A}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}A}{f_{i}^{2}}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}A}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}} \frac{f_{i}^{2}}}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}}}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}}{f_{i}^{2}} \xrightarrow{\mathcal{C}_{i}^{2}} \frac{f_{i}^{2}}}{f_{i}^{2}} \xrightarrow{\mathcal{C}$ slogan: cheracturs are orthogonal $\frac{Pf}{I} = \chi = \eta, \text{ thun } \langle \chi_{,\eta} \rangle = \sum_{a \in A} \chi(a) \eta(a) =$ For $\chi \neq \eta$, $| \lambda t = \chi \eta' \neq 1 \in A$ then $a \in A = \sum 1 = |A|$ $\{\chi,\eta\} = \sum_{\alpha \in A} \chi(\alpha|\eta|\alpha)^{-1} = \sum_{\alpha \in A$ Take bEA with a(b) #1. Thin $\langle \chi, \eta \rangle \chi(b) = \sum \chi(a) \chi(b) = \sum \chi(ab) = \langle \chi, \eta \rangle$ REA are A L sab are A (unc)

50 (x, y) = 0 1 Defin For $f \in L^2(A)$, define its Fourier transform $\hat{f} : \hat{A} \rightarrow \mathbb{C}$ by $\hat{f}(\alpha) = \frac{1}{\sqrt{1}} \langle f(\alpha) \rangle = \frac{1}{\sqrt{1}} \sum_{A \in A} f(\alpha) \chi(\alpha)$ $\sum_{A \in A} f(\alpha) \chi(\alpha) = \int_{A \in A} f(\alpha) \chi(\alpha) \int_{A \in A} f(\alpha) \chi(\alpha) \int_{A \in A} f(\alpha) \chi(\alpha) \int_{A \in A} f(\alpha) \int_{A \in$ so similar to $\hat{f}(x) = f(-x)$ for $f \in L_{be}^{\prime}(\mathbb{R})$