2025.亚、5 Planchural's Theorem Let $L_{bc}^{2}(\mathbb{R}) = \{f:\mathbb{R} \longrightarrow \mathbb{C} \mid f \text{ bdd cts with } \int_{\mathbb{R}} |f|^{2} < \infty \}$ $\approx \|f\|_2^2$ Lumma Lic (R) is an inner product space with $\langle f, g \rangle = \int_{\mathcal{R}} f \cdot \bar{g} ,$ and $L_{bc}(\mathbb{R}) \leq L_{bc}^{2}(\mathbb{R})$. Them [Planchurel] For every $f \in L_{bc}^{2}(\mathbb{R})$, we have $\hat{f} \in L_{bc}^{2}(\mathbb{R})$ and $\|f\|_{2} = \|\hat{f}\|_{2}$

Ħ	Let $f(x) = f(-x)$ and set $g := f * f$. Then
	$g(x) = \int_{\mathcal{P}} f(t-x)f(t) dt$
	$f(0) = f _2^2$
N	on $\hat{g}(t) = \hat{f}(t)\hat{f}(t) = \hat{f}(t)\hat{f}(t) = \hat{f}(t) ^2$. Thus
	$\ f\ _{2}^{2} = g(o) = \lim_{\lambda \to o} g * h_{\lambda}(o)$
	$= \lim_{\lambda \to 0} \int e^{-\lambda t } \hat{g}(t) dt$
	$= \lim_{\lambda \to 0} \int_{\mathbb{R}} e^{-\lambda t } \hat{f}(t) ^2 dt$

[monstone convergence] $= \|\hat{f}\|_{2}^{2}$ Upshat (): L'be (R) -> L'be (R) is an isometric embedding of $(L_{bc}(\mathbb{R}), \|\cdot\|_2)$ into $L_{bc}^2(\mathbb{R})$. i.e. () is unitary: $\langle \hat{f}, \hat{g} \rangle = \langle \hat{f}, \hat{g} \rangle$. Poisson Summation Thought experiment: Juppose F.R- I cts and VXER $g(x+1) = \sum_{m \in \mathbb{Z}} f(x+1) + m = g(x)$ $g(x) := \sum_{m \in \mathbb{Z}} f(x+m)$ converges absolutely. Then g: R -> C is 1-periodic.

Assume the Fourier series of g converges pointwise to g so that $g(x) = \sum_{n \in \mathbb{Z}} \hat{g}(n) e^{2\pi i n \cdot x}$ Then for x=0, $\sum_{m \in \mathbb{Z}} f(m) = g(o)$ $= \sum_{n=1}^{\infty} \hat{g}(n)$ $= \sum_{n \in \mathbb{Z}} \int \left(\sum_{m \in \mathbb{Z}} f(y+m) e^{-2\pi i n y} \right) dy$ g(y)

Suppose I -> I swap begally. Thin $= \sum_{n \in \mathbb{Z}} \int_{m} \int_{m} f(y) e^{-2\pi i n y} dy$ = $\sum_{n \in \mathbb{Z}} \int f(y) e^{-2\pi i n y} dy$ ĝ(n) = n-th Fourier coeff of g (i) = Fourier transform of f evaluated at n $= \sum \hat{f}(n)$, So guass: $\sum_{k \in \mathbb{Z}} f(k) = \sum_{k \in \mathbb{Z}} \hat{f}(k)$

Poisson summation Then let $f \in L'_{bc}(\mathbb{R})$ be precensise ctsly differentiable with Finitely many exceptions, let $\varphi(x) = \begin{cases} f'(x) & \text{if it excests} \\ 0 & \text{old} \end{cases}$ Suppose x2 f(x), x2 p(x) are bounded. Then E.g. fed $\sum_{k \in \mathbb{Z}} f(k) = \sum_{k \in \mathbb{Z}} f(k)$ Pf Let $g(x) = \sum_{h \in \mathbb{Z}} f(x+h)$. Since $x^2 f(x) \leq C$ for some constant C, we know $|f(x+k)| \leq \frac{C}{|x+k|^2}$ so \mathcal{J} converges wiformly and absolutely. The same is true of $\tilde{\mathcal{G}}(x) = \sum_{k \in \mathbb{Z}} \mathcal{P}(x+k)$. We aim to show g is piecewise doly diff! >> pointwise

		. (Con	,√ ,	ur.	P	- n	ر مرو	đ) / /	Fa	- 7~1	riv	N	serves.									
			Mı V		h	8 ~1∕ ∪			× '	ç ((ť)d	4 4	0.	$\int_{0}^{\infty} \sum_{k \in \mathbb{Z}} \varphi(t+k) dx$	κ. 								
														, γ, γ, ,	$\sum_{k \in \mathbb{Z}} \int_{0}^{\infty} \varphi(t + h) dt$	· · ·	(s	um	LM	iver C	zes	Un	; }]	
														 .	L J & (t) dt Lez k	· ·								
														12	∑ f(k+x)-f(k∈Z	(k)	. C	۶T	ς Ζ]	• • • •				
														. 13 .	g(x) - g(0)									

I.r. $g(x) = g(0) + \int_{0}^{x} \tilde{g}(t) dt$ is processive ctsly diffl, as desired. Justify () by unif conv of sum on [0,1]. Theta Servies For t > 0, let $\Theta(t) := \sum e^{-t\pi k^2}$. Thus For all t > 0, $\Theta(t) = t^{-t/2} \Theta(1/b)$. Pf Set $f_t(x) := e^{-t\pi x^2}$. We have shown $\hat{f}_i = \hat{f}_i$, and since $f_t(x) = f_i(VFx)$, we get

									ł	() t	(×1	∫. ₹	 	t	1/2	ſf,	(平	>)		. t	- 17	'l .	f,	(× /	ĺ√ _₹)			
													 []	t	h f	∩((x)													
		- iin	e	 	f _t	.(e 7	S	ر	P	1552	- 	. Sı	~M 1	mat	<u>ר</u> סי		ኯኯኯ	lies											
				Θ	(t)		, () , ,		5	. f z.	t ((k)	 . 	کر او	- - - 74	f _t	(k))												
													 . . 	t	-14	ke	- - - 	f, (ł	k)											
													 	t	-1/2	E	€(-	<u>+</u>)			D									

Why care? Can extend @ to a function on H={zEC in(z)>0} Write Θ as a series in $q = e^{\pi i Z}$ k is square 40 k=0 $\Theta(z) = \sum a_k q^k \qquad s.l. \qquad a_k = j$ 0 o/w and a series in a second s Use the trans's property $\Theta(t) = t^{-1/2} \Theta(\frac{1}{t}) + prove$ has weight 2 and can write as a linear combo of Eisenstein forms Of is a modular form

makes built finda for q-series of 194 $\mathbf{\mathcal{H}}^{\mathbf{H}} = \left(\sum_{\alpha, k} \mathbf{\mathcal{A}}_{k}^{\mathbf{k}} \right)^{\mathbf{H}}$ = $\sum b_k q^k$ with $b_k \ge 1$ iff $k = n_1^2 + n_2^2 + n_3^2 + n_4^2$. Explicit finla: 1 bh 21 th - Lagrange's 4 squarus theorem (2) explicit values of b_k = Mumford, Lectures on Thita Series Diamond-Shurman Tata