									202	5. MI	3	
Invarsior	Formerl	a										
Defn Fo	γ λ>0,	the Go	russ ke	rnel	. i5							
	· · · · L	: R -	→ R	· ·								
	· · · · · · · ·	· · · · · ·	[-λ	t 7	enit:	× 11					
		· · · · ·	J.	E 12			dt					
Lemma 1	In fact,	h _x (x) =	$\frac{2\lambda}{4\pi^2 x^2}$	+ 22	and	S _R	hx(×`	\ d x	 . =			
It fol	ong that	for) > 0	, h _{>} (>	c) =	$\frac{1}{\lambda}h_{1}$	$\left(\frac{x}{\lambda}\right)$) .					

	. P	f i	t (• {•		•	• •														
	. <u>-</u>	Ϊ.	μ	ابر ا	con	put	te														
							היו	<u>ຼ</u> ແ	, .				r ^o ,	1-it	. <u>x</u> ' +	·λt [·]	•				
				h	`(x`) =		<i>2</i> π1	tx -	λt o	6	÷.	e				dt				
				. /	`		· J·														
														· ·	•	• •					
								2mit;	x - Xt	t ø		2	$\pi i t \times$	(+)	1	1					
						Ę					. +	- -	<u> </u>								
								$2\pi i x$	·- >				271	× +.	λ_{-}						
																	<u>ب</u> ع				
								 		· · · ,											
						ł	·		~ · +	·	<u> </u>										
							` >	- 2 1	ĭχ	· X+	LAI	K									
								2入													
						15		12 1	4_2	.2											
									TT X												

		Ē		ih																													
		. "	ų	Υ.Υ.		۲.																											
					ſ		• ,		•				.7	. 1	1.		l					1.			1 2	2:	πх	ړ	11 3	2	π	1×	
						h	. <u>,</u> (×)	J.	X.	11.		~	-		-	÷	12	 π x		L·	d X	٤.				λ)			
					ſ	2.							. >	N.	6	. \	ţ.	(>	~	-)													
					. "										۲¢				Â														
														ſ		1																	
											-	ا	_		·	<u> </u>		ðv	l'														
												•	ĸ	J	ं ।	+ U	ເ້																
														· D	<u>)</u>																		
																			.0	ວ່													
													Ľ	·		10	in 1																
											-	•	π																				
																			.` ـ	- ÁS													
											11.																						
													•																				

Lumma 2 IF FELbe (PR), then for all 2>0, $f * h_{\chi}(x) = \int_{\mathbb{R}} e^{-\chi |t|} \hat{f}(t) e^{2\pi i \chi t} dt$ Pl Let's compute: $f + h_{\lambda}(x) = \int f(x-y)h_{\lambda}(y)dy$ = $\int_{\mathbf{R}} f(x-y) \int_{\mathbf{R}} e^{-\lambda|t|} e^{2\pi i t y} dt dy$ = $\int_{\mathbb{R}} e^{-\lambda |t|} \int f(x-y) e^{2\pi i t y} dy dt = \gamma \leftarrow x-y$

							· · ·	∫ e IR	-X1t1 5	f(y R	.) e 21	πit(x-y		y	dt					
						 	∫e-× R	t 271 U	ixt	∫ fu R	1)e ^{-2.}	πi tu	r d	m M	dt				
							 	∫ _e -× R	t 2π €	ixt f	(t) (H,								
		L	mл	N.	3	F	 all	felb	$e(\mathbb{R})$, × (ER,									
								$\begin{cases} im \\ \lambda \rightarrow 0^+ \end{cases}$	f*h,	(x)	= f()	() . 								

17 Again, calculate : $f*h_{\lambda}(x) - f(x) = \int_{\mathcal{R}} f(x-y)h_{\lambda}(y)dy - f(x)$ 50 F(x) - (F(x)h(y) $= \int_{\mathbf{R}} (f(x-y) - f(x)) h_{\lambda}(y) dy \qquad \int_{\mathbf{R}} h_{\lambda} = 1 \int_{\mathbf{R}}$ $= \int_{\mathbb{R}} (f(x-y) - f(x)) \frac{1}{\lambda} h_1(y/\lambda) dy$ $u = \frac{1}{\lambda} du = \frac{1}{\lambda} dy$ $= \int_{\mathbb{R}} (f(x - \lambda u) - f(x)) h_{1}(u) du$

Since $f \in L'(\mathbb{R}^1)$, $\exists C > 0$ st. $|f(x)| \leq C \quad \forall x \in \mathbb{R}$. Thus the integrand is dominated by 2Ch, (u). As $\lambda \to 0^+$, $f(x - \lambda u) \to f(x)$ locally uniform by in u So by donainated convergence, $f * h_{\lambda}(x) - f(x) \xrightarrow{\longrightarrow} O$. Ц. Them [inversion formula] Let felbe (R) and assume felbe (R) as well. Thin VxER, (% f = f f(x) = f(-x)

Pf	The claim is equivalent to
	$f(x) = \int \hat{f}(y) e^{2\pi i x y} dy$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Б	$\lambda > \delta$
	$f * h_{\lambda}(x) = \int_{\mathbb{R}} e^{-\lambda t } \hat{f}(t) e^{2\pi i x t} dt$
by	Lemma 2. As X -> 0+, the LHS -> flx) by Lemma 3.
The	RHS integrand is dominated by If(t)], so by dominated
	$f(x) = \lim_{\lambda \to 0^+} \int_{\mathbb{R}} e^{-\lambda t } \hat{f}(t) e^{2\pi i \times t} dt = \int_{\mathbb{R}} \hat{f}(t) e^{2\pi i \times t} dt. \Box$

Cor $(\hat{1}: \hat{S} \xrightarrow{=} \hat{S})$ with characteristic polynomial $X^{4}-1$. \implies the only sigenvalues of $(\hat{1})$ are $\pm 1, \pm i$. Prop Let $f(x) = e^{-\pi x^{2}}$. Then $f \in \hat{S}$ and $\hat{f} = \hat{f}$. $\frac{PF}{PF} \quad Observe \quad f'(x) = -2\pi x e^{-\pi x^2} = -2\pi x f(x)$ In fact (axe), f is the unique sol'n to this diff'l egn up to realar multiplication. We have fed (why?) so fed and we can compute $(\hat{f})'(y) = \int (-2\pi i x) e^{-\pi x^2} e^{-2\pi i x y} dx$ $= i \int_{R} \left(e^{-\pi x^{2}} \right)' e^{-2\pi i x y} dx$

 $u = e^{-2\pi i x y} \quad dv = (e^{-\pi x^2})' \quad dx$ $du = -2\pi i x e^{-2\pi i x y} \quad dx \quad v = e^{-\pi x^2}$ $= i uv \int -2\pi y \int f(x) e^{-2\pi i x y} dx$ $= -2\pi \gamma fly)$ By the diff'(eqn, f(y) = ce^{- \pi'y} for some constant c. Since $\hat{f}(x) = f(-x)$, know $c^2 = 1 \implies c = \pm 1$ Since $\hat{f}(v) = \int_{R} e^{-\pi x^2} dx > 0$, we must have c = 1.

$\frac{Cor}{R} = \sqrt{\pi} \frac{1}{2} 1$	N.	o elev or anti	nentary - durivat - x ²	express ive sf) <i>o</i> n .
$\frac{Pf}{L} \left[\int f(x)^2 e^{-\pi x^2} + \frac{Ry}{L} \right]$	propositi				
$I = f(o) = \hat{f}(o) = \int_{R}$	-πx ² - e e	2πίχ-0	L		
τα το	$-\pi x^2 dx$				
Now $\int e^{-x^2} dx = \sqrt{\pi} \int e^{-\pi u^2}$ R $u = \frac{x}{r}$	de = V	$\widehat{\pi}$ · · · · · · · · · · · · · · · · · · ·			
$dn = \frac{1}{\sqrt{\pi}} dx$					