2025. I. 24
Eigenbasis Mathed
Loperator on L'(5') or L2(la,b]) (x coord)
Toperator ~ L'(R20) or L'(R20) (t coord)
Goal Find $u: 5' \times \mathbb{R}_{>0} \longrightarrow \mathbb{C}$ satisfying $L(u) = T(u)$
and boundary, initial conditions.
Superation of variables seeks a solution of the form
superation of variables seeks a solution of the form $u(x,t) = \sum \phi_n(x) \psi_n(t)$ in real
(1) Boundary conditions on x determine D(L). Show L Hermitian.
(2) Find an eigenbasis for L: or they one busis (ϕ_n) of $\# = L^2(S)$ with $\phi_n \in \mathcal{O}(L)$, $L\phi_n = \lambda_n \phi_n$ for some $\lambda_n \in \mathbb{R}$.

(3) For each a solve the ODE The - Xnth for the (4) Know L is diagonalizable wit (ϕ_n) ; hope T is as well wit V_n . Then $u(x_1t) = \sum \phi_n(x) \Psi_n(t)$ is a formal solution to Lu=Tu, Remains to check initial condition, convergence, and validity of $T \Sigma(\dots) = \Sigma T(\dots)$ in (4). A $\in F^{n \times n}$ diag'le Tools for uniform convergence (IN UAU = diag(him, hn) => (2) Av; = hiv; Recall a sequence of fins f. X = C -> C converges aniformly to $f: X \longrightarrow C$ when $\forall \varepsilon > 0 \exists N s.t. \forall z \varepsilon X, n > N$, $|f_n(z) - f(z)| < \varepsilon$, ind of z!

Lemma $(f_n: X \to C)$ converges uniformly to $f: X \to C$ iff $\lim_{n \to \infty} \|f_n - f\|_{\infty} = 0. \quad I.e. \quad uniform \quad convergence = L^{\infty} \quad convergence$ for ||g||00 = FLP |z(2)| ZEX $\frac{PF}{Z \in X}$ Let $d_n = \|f_n - f\|_{c_0} = \sup_{Z \in X} |f_n(z) - f(z)|$ (=) Suppose lim dn=0. Since |f_(z)-f(z)| = dn Hz EX, $f_n(z) \longrightarrow_{n \to \infty} f(z)$ with rate independent of 2 (\Rightarrow) Suppose $\forall \Xi > 0 \exists N s.t. \forall \Xi \in X, n > N, we have <math>|f_n(\overline{e}) - f(\overline{e})| \leq \frac{\Xi}{2}$. Thun $d_n \leq \frac{\varepsilon}{2} < \varepsilon$ is $d_n \rightarrow 0$.

Weinerstrass M-test Suppose $\emptyset \neq X \in \mathbb{C}$, $g_n : X \to \mathbb{C}$, $M_n > 0$ with ΣM_n convergent, and $|g_n(z)| \leq M_n$ $\forall z \in X$. Then $\Sigma g_n(z)$ converges absolutely and uniformly to some $f: X \rightarrow T$. $\frac{Pf}{Pf} \quad Observe \quad \left| \sum_{n=k}^{m} g_n(z) \right| \leq \sum_{n=k}^{m} |g_n(z)| \leq \sum_{n=k}^{m} M_n = \left| \sum_{n=k}^{m} M_n \right|$ Since EM, converges, its partial sums ratisfy the Cauchy criterion, so the same holds for Equ(2), ind. of Z. I.e. Egn is uniformly cauchy \Longrightarrow uniformly convergent. All this holds for Elgnl & well, so Egn is absolutely conv. too.

Limits vs. integrals and durivatives	Riemann
Then let $(f_n: [a,b] \rightarrow \tau)$ be a	sequence of integrable fins
Then let $(f_n: [a,b] \rightarrow C)$ be a converging uniformly to $f: [a,b]$	$\rightarrow \sigma$ Then
$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_{n}(x) \right)$	
$J_{\alpha} n \infty$	$n \rightarrow \infty J_{\alpha}$
\underline{Pf} AW , \Box	
Limits must converge with derivatives	s too? Right? right?

E.g. Set $f_n(x) = x ^{1+1/n} \xrightarrow[n \to \infty] \times 1$ with form by in x
We have $f'_n(o) = 0$, but $ x $ is not diff'(at 0 .
Nonethiluss;
Then let $\emptyset \neq X \subseteq \mathbb{C}$ open, $f_n : X \to \mathbb{C}$ diff 'l converging pointwise to $f: X \to \mathbb{C}$. Suppose each f'_n its and the sequence f'_n converges uniformly to some $g: X \to \mathbb{C}$. Then f is diffi and $f'(z) = g(z)$.
Cor If $\Sigma g'_n(z)$ converges uniformly, each g'_n is cts, and $\Sigma g_n(z)$ converges, then $\frac{d}{dz} (\Sigma g_n(z)) = \Sigma g'_n(z)$. If $\beta \in \Sigma$

Pf Thm Fix al	X. WLOG, assume $X = B_r(a)$ for some $r > 0$.
	For fixed $z \in B_r(a)$, define $u_2: [0,1] \rightarrow \mathbb{C}$ $t \longmapsto t_2 + (1-t)a$
Compute I=lim	then $u'_{2}(t) = z - a$ and $ u_{2}(t) - a \leq z - a $, with $u_{2}(0) = a$, $u_{2}(1) = z$. $\int_{0}^{t} f'_{n}(u_{2}(t)) u'_{2}(t) dt$ in two ways.
	$J_{n} = \lim_{n \to \infty} \left(f_{n}(u_{2}(1)) - f_{n}(u_{2}(0)) \right)$ = $f(z) - f(a)$.
On the other her	nd, $f'(u_{\tau}(t))$ converges unif on $(0, 1)$,

so $I = \int_{0}^{1} (\lim_{n \to \infty} f_{n}'(u_{2}(t))u_{2}(t)) dt$ $\int_{0}^{z} g(u_{2}(t))(z-a) dt$ $= (z - a) \int_0^1 g(u_z(t)) dt \quad (2)$ Since $\mathbf{0} = \mathbf{0}$, $\frac{f(z) - f(a)}{z - a} - g(a) = \left(\int_{0}^{1} g(u_{2}(t))dt\right) - g(a)$ $= \int_{6}^{1} (g(u_{2}(t)) - g(a)) dt$ Thus $\left| \begin{array}{c} f(t) - f(a) \\ \hline t - a \end{array} - g(a) \right| \leq \int_{0}^{t} \left| g(u_{t}(t)) - g(a) \right| dt \xrightarrow{T \to a} 0$

So $f'(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = g(a)$. □ Back to PDEs ... Wave equation on 5' Given $f,g \in L^2(S')$, find u: $S' \times \mathbb{R}_{>0} \to \mathcal{C}$ s.t., $(D) = u(-, t_{c}) \in C^{2}(S')$, $u(x_{0}, -) \in C^{2}(\mathbb{R}_{>0})$ (IV) $\lim_{t\to 0^+} u(x,t) = f(x)$ $\lim_{t\to 0^+} \frac{\partial u}{\partial t}(x,t) = g(x)$. $(PDE) - \frac{\partial^2 u}{\partial x^2} = - \frac{\partial^2 u}{\partial t^2}$ Apply the eigenbasis method: $L = -\frac{3^2}{3x^2}$, $T = -\frac{3^2}{3t^2}$

Know L is Hermitian with sigenbassis $(e_n)_{n \in \mathbb{Z}}$ and associated sigenvalues $\lambda_n = 4\pi^2 n^2 = (2\pi n)^2 > 0$ Set $K_n = |2\pi n|$. Have $f = \sum \hat{f}(n)e_n$, $g = \sum \hat{g}(n)e_n$ in L^2 Our ODE is $T t = \lambda_n t$, i.e. $t'' = -\kappa_n^2 t$ with solutions $\mathcal{H}(t) = C_0 \cos(\kappa_n t) + \frac{C_1}{\kappa_n} \sin(\kappa_n t)$ for $n \neq 0$ where $C_0 = f_n(0) = \hat{f}(n)$, $C_1 = f_n'(0) = \hat{g}(n)$ i.e. $\psi_n(t) = \hat{f}(n) \cos(\kappa_n t) + \frac{\hat{g}(n)}{\kappa_n} \sin(\kappa_n t)$ Thus the wave equation has formal sol'n

 $u(x,t) = \hat{f}(0) + t \hat{g}(0) + \sum e_n(x) \Psi_n(t)$ Ser 12.3 How for proving this converges, etc.