2025. II.13 Operators on Hilbert spaces In preparation for our treatment of PDE's via the eigenbasis method, we develop the language of (Hermitian) operators on a Hilbert Space. Defn Let It be a Hilbert space. An operator on It is a liner map $T: \mathcal{D}(T) \longrightarrow \mathcal{H}$ where $\mathcal{D}(T) \leq \mathcal{H}$. E.q. X = 5' or [a,b], $H = L^2(X)$ Then $D: C'(X) \longrightarrow H$ $f \longmapsto -if'$ is an operator on H. Note $D(f) = \sum_{n \in \mathbb{Z}} 2\pi n f(n) e_n$

E.g. For H a separable H: lbert space with orthonormal basis $B = (e_n)_{n \ge 1}$, define Ho = { ∑ cnen | all but finitely many cn=0} Define operators pe, 1 on H by formula $\mu\left(\sum_{n=1}^{\infty}c_{n}e_{n}\right)=\sum_{n=1}^{\infty}nc_{n}e_{n}$ $l\left(\sum_{n=1}^{\infty}c_{n}e_{n}\right) = \sum_{n=1}^{\infty}\left(\frac{c_{n}}{n}\right)e_{n}$ with $D(\mu) = H_{o}$, $D(\iota) = H$

E.g. More generally, for $\alpha: \mathbb{Z}_{\geq}, \rightarrow \mathcal{F}$ any function, $\alpha\left(\sum_{n=1}^{\infty}c_{n}e_{n}\right)=\sum_{n=1}^{\infty}\alpha(n)c_{n}e_{n}$ defines a linear operator on H with D(a)=Ho. Defn Such an operator is called a diagonal operator with respect to (en). E.g. The operator D: f - - if on L²(5') is diagonalized by the standard basis (en)nez.

Defin An operator T on H is bounded when JM>0 s.t. $\forall f \in \mathcal{H}, \|T(f)\| \leq M \|f\|$ The TFAE: (UC) T is uniformly continuous (CO) T is continuous at $O \in O(T)$ (B) T is bounded. PF HW. 🗆 Hermitian and positive operators Defn An operator T on H is Hermitian (or self-adjaint) when $\forall f,g \in \mathcal{D}(T)$, $\langle T(f),g \rangle = \langle f,T(g) \rangle$

Remark Bounded operators on a Hilbert space always admit an adjoint T* satisfying (T(fl,g)=(f,T*g). (This is a consequence of the "Biesz representation theorem".) Hermitian operators satisfy T=T*. operator : Hermitian operator :: complex #s : real #s E.q. Consider D: f - - if on L2(5') again, with D(D)=C'(s'). For f,g & C'(S') $\langle D(f),g \rangle = \int (-i)f'(x)g(x) dx$ = $(-i)f(x)\overline{g(x)} |_{o}^{i} - \int_{o}^{i} (-i)f(x)\overline{g'(x)} dx$

	$\frac{1}{2} + \frac{1}{2} + \frac{1}$
	$= (-i)(f(1)g(1) - f(0)g(-)) + \int_{0}^{1} if(x)g'(x) dx$
	$= \int_{-\infty}^{\infty} \left[f(x) \left(\frac{1}{(x)} + f(x) \right) \right] dx$
	$\int_{a} f(x) \left((-i) g'(x) \right) dx$
	$=\langle f, D(g) \rangle$
	Thus D is Hermitian.
	Q For which $\alpha: \mathbb{N} \to \mathbb{C}$ is $\alpha(\Sigma cnen) = \Sigma \alpha(n) cnen Hermitian? (It Hibert space with orthonormal basis (en))$
	$\frac{A}{z(\Sigma c_n e_n)} \sum d_n e_n \ge \sum \sum \alpha(n) c_n e_n, \sum d_n e_n > \forall n$ = $\sum \alpha(n) c_n d_n \stackrel{?}{=} \sum c_n \alpha(n) d_n iff \alpha(n) \in \mathbb{R}$

E.g. The shift o: Ecnen ~ Ecnent, is a non-Hermitian operator. (moral exc - not Hermitian) Then Let T be a thermitian operator. Then $\forall f \in \mathcal{D}(T)$, $\langle T(f), f \rangle$ is a real number. Pf By conjugate symmetry, $\langle f, T(f) \rangle = \langle T(f), f \rangle$ but the LHS also equals (T(f), f) by self-adjointness. Thus $\langle T(f), f \rangle = \langle T(f), f \rangle$ is real. Defin A Hermitian specator is positive when $\langle T(f), f \rangle \ge 0$ for all f. I Can have $\langle Tf, f \rangle \ge 0$ for $f \neq 0$.

E.g. On $L^{2}(5')$, $\Delta: f \mapsto -f''$ with $\mathcal{O}(\Delta) = C^{2}(5')$ is called the Laplacian operator. Observe $\langle \Delta(f), g \rangle = - \int_{0}^{1} f''(x) g(x) dx$ $= -f'(x)g(x) \Big|_{x}^{x} + \int_{x}^{x} f'(x)g'(x) dx$ = {f',g'} Similarly, $(f, \Delta(g)) = \langle f', g' \rangle$ so Δ is Hermitian. Moreover, $\langle \Delta(f), f \rangle = \|f'\|^2 \ge 0$ so Δ is positive. Eq. A diagonal operator associated with $\alpha : N \rightarrow C$ is positive iff $\kappa(n) \ge 0$ Yn.

Then A Hermitian operator's eigenvalues are all real. If the operator is positive, then the eigenvalues are also nonnegative. If Suppose $T: \mathcal{O}(T) \rightarrow \mathcal{H}$ is Hermitian with $T(f) = \lambda f$ for some $f \in \mathcal{D}(T) \setminus O$. Thun $\mathbb{R} \ni \langle T(f), f \rangle = \langle \lambda f, f \rangle = \lambda \| f \|^2$ $\Rightarrow \lambda \in \mathbb{R}$. If T is positive, then $(T(f), f) \ge 0$ to $\lambda \ge 0$. Them let The a Hermitian operator, 10,..., Un & a set of eigenvectors of T with distinct eigenvalues $\lambda_{1,...,}$ λ_{n} . Then $\{u_{1,...,}, u_{n}\}$ is an orthogonal set.

Pf WTS: $\langle u_i, u_j \rangle = 0$ for $i \neq j$. Know: $\langle Tu_i, u_j \rangle = \langle u_i, Tu_j \rangle$ [Hermitian] $\langle u_i \lambda_j u_j \rangle$ $\langle \lambda, u_i, u_j \rangle$ $\lambda_i \langle u_i, u_j \rangle$ $\lambda_j \langle u_i, u_j \rangle$ so if $\langle u_i, u_j \rangle \neq 0 \implies \lambda_i = \lambda_j = \lambda_j$ eigenval of Hermitian & are real. []

		Ę	.g	د بر ب	.	Le	ł	ر ا ا	H :	:	2(51)	[*	Ĩ,	5 (£)) =		if))		∧ (f)	. 15 .	• •	f	// · 、					
				ain	<u>~</u>) 	n N	\	1EZ 27	Z)		15 0	د. ۱	• •	ei; 14-	72N -2	ibas	ጵኝ	f) · , · ,	D D I	G	N	. 8	f	. (Å	. l	υŕ	łh		
				70	ן א ני י	∎a ∙	NU			<i>L</i> .			~~~	a			L. 1	n,	ر ر		ř												
			Ċh	ud	بر		Ď	(e	n)	- 1 7-	(-	i)	21	tìr	1 2	2TT	in.	_X															
									•	11	2	πη	L	In	l	/	• •																
								2					~		~ 1		•		•														
							٨	(و	'n.	, -	. Į) (D	(بې	,))	. 5	. 4	$[\pi]$	ัก	و آ	ท	V											