	2025, II, 12
Riemann 3-values	
Defn For set with Re(s)>1, define	
$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$	
this is the Riemann 3-function.	
Notes · Basic tools from complex analysis provide meromorphic continuation of 3 to C (with sim • Riemann hypothesis: IF 3(s)=0 and 0< Re(s)<	a unique p(t p. le at s= 1), 1, thun $Re(s) = \frac{1}{2}$.
Thm [Euler, 1737] For Re(s)>1,	
$\overline{S}(s) = \prod_{p \text{ prime } I - p^{-s}}$	

Pf Each term _____s can be expanded as a geometric series $|+\frac{1}{p^{5}}+\frac{1}{p^{25}}+\frac{1}{p^{35}}+\cdots$, which converges absolutely for Re(s)>1. Note that $\frac{1}{1-p^{-5}} = \left(1+\frac{1}{p^{5}}+\frac{1}{p^{25}}+\cdots\right)\left(1+\frac{1}{q^{5}}+\frac{1}{q^{25}}+\cdots\right)$ $= 1 + \frac{1}{p^{s}} + \frac{1}{q^{s}} + \frac{1}{(p^{2})^{s}} + \frac{1}{(p^{2})^{s}} + \frac{1}{(q^{2})^{s}} + \frac{1}{(q^{2$ $= \sum_{n=p^{a}q^{b}} \frac{1}{n^{s}}$ Proceed by induction on max size of prime factors to get $\frac{1}{p \text{ prime } 1 - p^{-5}} = \frac{1}{2}(s)$

Gr There are infinitely many primes. $p_{f} = 00 = (1 + \frac{1}{2} + \frac{1}{3} + \cdots = 3(1) = \Pi + \frac{1}{1 - \frac{1}{p}} = \Pi + \frac{p}{p-1}$ $p_{f} = 0$ Cor The asymptotic probability that s randomly selected positive integers share no compron factors >1 is $\frac{1}{3(5)}$ Pf We have $\frac{1}{3(s)} = \left(\prod_{p \neq s} \frac{1}{1-p^{-s}} \right) = \prod_{p \neq s} \left(1 - \frac{1}{p^{s}} \right)$. Now ps = Prob (5 pos integers all divisible by p) (Why?) so $1 - \frac{1}{p^{s}} = \operatorname{Prob}\left(\operatorname{at}\operatorname{least}\operatorname{one}\operatorname{ofs}\operatorname{positive}\operatorname{integers}\operatorname{not}\operatorname{div}\operatorname{by} p\right)$ By independence, $\frac{1}{7(r)}$ = Prob(s pos integers share no prime forctor)

Cor Suppose trees are planted in a square grid and you are standing at (0,0). Pick a tree at random, The probability that your view of the tree is not obstructed by another tree is $\frac{1}{5(2)}$ 🌵 🔺 🦻 🕤 6 • • • •/• • 🕡 🔹 p 🐓 💊 🖜 🗸

Goal Compute 3(5) for s E ZZ
We will fail ! We'll get $\overline{J}(2s)$, $s > 1$ integer $\overline{J}(2s+1)$ - unknown !
$\overline{\zeta(2s+1)}$ - unknown!
Bernoulli polycomials
Today's convention: define functions on [0,1) then extend periodically
Inductive Defn $B_1(x) = x - \frac{1}{2}$
$\frac{d}{dx}B_{k}(x) = B_{k-1}(x)$
$\int_0^1 B_k(x) dx = 0$
· · · · · · · · · · · · · · · · · · ·

Q1 Are the Bk(x) well-defined polynomials? Q_2 Determine $B_2(x)$. dy let's comparte $\hat{B}_k(n) = \int B_k(x) e^{-2\pi i n \cdot x} dx$ $= B_{k}(x) = \frac{e^{-2\pi i n x}}{-2\pi i n} \int_{0}^{1} - \int_{0}^{1} \frac{e^{-2\pi i n x}}{-2\pi i n} B_{k-1}(x) dx$ $= \frac{1}{-2\pi i n} B_{k}(x) \Big|_{0}^{+} + \frac{1}{2\pi i n} B_{k-1}(n)$ $= \frac{1}{-2\pi i n} \int_{0}^{\infty} B_{k}(x) dx + \frac{1}{2\pi i n} \frac{1}{k} (n)$ $= \frac{1}{2\pi i n} \hat{B}_{k-1}(n)$

Since $\hat{B}_{1}(n) = \int (x - \frac{1}{2}) e^{-2\pi i n x} dx = \frac{-1}{2\pi i n}$ (comp'n) we learn that $\widehat{B}_k(n) = \frac{-1}{(2\pi i n)^k}$ Thus the Fourier serves of Bk(x) is $\frac{-1}{(2\pi i)^k} \sum_{\substack{0 \neq n \in \mathbb{Z}}} \frac{e^{2\pi i n x}}{n^k}$ Claim For k > 1, $B_k(o) = B_k(1) \implies B_k$ its on S' and the Fourier series converges pointwise. If Four ptrise conveyence of Fourder Sering $Pf = B_k(1) - B_k(0) = \int_0^1 B_{k-1}(x) dx = 0$ for k > 1IOU of cts

Then $B_{2s}(0) = \frac{-2\overline{s}(2s)}{(2\pi i)^{2s}}$ for $s \ge 1$ and $B_{2s+1}(o) = 0$ for 2s+1>1 cancelling = n terms In particular, $\overline{\zeta}(2s) = (-1)^{s+1} 2^{2s-1} \pi^{2s} \mathcal{B}_{2s}(0)$ Prop The polynomials B_h(x) have generating function $I + t \mathcal{B}_{1}(x) + t^{2}\mathcal{B}_{2}(x) + t^{3}\mathcal{B}_{3}(x) + \cdots = \frac{te^{tx}}{e^{t} - 1} \in \mathbb{C}[t, x]$

PF Define f(t,x) = LHS. Then $\frac{2}{2x}f(t,x) = t + t^{2}B_{1}(x) + t^{3}B_{2}(x) + \cdots = t \cdot f(t,x)$ Thus $f(t,x) = C(t) e^{tx}$ for some $C(t) \in C[t]$. To comprite C(t), observe $\int_{0}^{1} f(t,x) dx = \int_{0}^{1} dt + \sum_{l>0} t^{l} \int_{0}^{1} B_{l}(x) dx$ while $\int_{0}^{t} C(t) e^{tx} dx = C(t) \int_{0}^{t} e^{tx} dx = C(t) \frac{e^{tx}}{t} \int_{x=0}^{x=1} C(t) \frac{e^{t}-1}{t}$. Thus $C(t) = \frac{t}{e^{t}-1}$ and $f(t,x) = \frac{te^{tx}}{e^{t}-1}$.

Evaluating at x= 0 gives $1 + t B_{1}(0) + t^{2} B_{2}(0) + t^{3} B_{3}(0) + \cdots =$ $e^{t} - 1$ $\Rightarrow 1 - \frac{t}{2} - \frac{t}{e^{t} - 1} = t^{2} B_{2}(0) + t^{4} B_{4}(0) + t^{6} B_{6}(0) + \cdots$ Taylor expand: $\frac{-t^2}{12} + \frac{t^4}{720} - \frac{t^6}{30240} + \frac{t^8}{1209600} - \cdots$ Hence $B_2(0) = \frac{-1}{12} \implies \tilde{f}(2) = \frac{\pi^2}{6}$ $\frac{1}{5(2)} = \frac{6}{\pi^2}$ = Prob(2 possints being coprime) \$\$ CO.770 $B_{4}(0) = \frac{1}{720} \implies \zeta(4) = \frac{\pi^{4}}{90}$ $B_6(0) = \frac{-1}{30240} \implies \overline{3}(6) = \frac{\pi^6}{945}$