2025, I 5 Bessel's inequality $\|f_N\| \leq \|f\|$ PF Recall $f_N = \sum_{n=-N} \hat{f}(n)e_n = proj_{F_N} f$ where $F_N = span \{e_{-N}, \dots, e_N\} \leq L^2(S')$ is the subspace of degree N trigonometric polynomials. We have $f-f_N \perp f_N$ f_N so by Pythagoras $\|f\|^{2} = \|f - f_{N} + f_{N}\|^{2} = \|f - f_{N}\|^{2} + \|f_{N}\|^{2} \ge \|f_{N}\|^{2}$

Def- The Dirichlet kernel IDN | NEW is $D_N(x) \coloneqq \sum e_n(x)$ n= - N The Figur kernel {FN |N>1} is $F_{N}(x) = \frac{1}{N} \sum_{k=0}^{\infty} D_{k}(x)$ (sea clamo) The For $f \in C^{\circ}(S')$, $f * D_N = f_N$ and $f * F_N = \frac{1}{N} \sum_{k=0}^{N} f_k$ Pf By linearity of convolution, it suffices to show that

			f	* (2 2 1	•	,ĉf	- - 	~)	r v		.)		Cy	nd	ĩ	inc	dı	ed	l													
									(f	*0	())	(>	×)		ن		f ((†)	Je	nl	, x -	- t) d1	· ·									
													· ·	• • •	j ∫ J	`f	¦(+	;) (e j	"(ť ť)) e	'n (×) d	: !t :								
															•	f,																	
	1) 7~		. T	ħ	N	1.41	•	r Cr	, Sà											-		 	د العرا	۲ کی ا	ر بر بر	st	2 2 4	0			
		• • •									S _N	- - -	<u>ب</u> ر بر) [: }		(f	- - - -	P	, N		(×						, , , ,	- 7 .					

	Lin	nma	For KE?	5 ¹ , n≥0	, and N≥1, we have		
			1)_(x) = {	$\sin((2n+1)\pi \times)/\sin(\pi \times)$;f x \$0	
					2n+1		
			· · · · ·]	$F_{x}(x) = \langle$	$\left(\frac{1}{N}\operatorname{sin}^{2}(N\pi x)/\operatorname{sin}^{2}(\pi x)\right)$;f x \$ 0	
						if x = 0	
	邗	Let a	$\pi i X$	Then			
			$\mathbb{D}_{n}(\times)$	$=\sum_{n=1}^{n}q^{2k}$	$= \int \frac{(q^{-2n} - q^{2n+2})}{(1-q^2)}$	∱ x¢0	
			· · · · · ·	k= - n	$\sum_{n=1}^{\infty} \frac{2n+1}{n} = \sum_{n=1}^{\infty} \frac{2n+1}$	if x=0	

Now $\frac{q^{-2n}}{q} = \frac{2n+2}{q} = \frac{2n+1}{q} = \frac{2n-1}{q}$ 2 - 2and $q^k - q^{-k} = 2isin(k\pi x)$, giving the result for $D_n(x)$. Now $F_N(0) = \frac{1}{N} \sum_{k=0}^{N-1} (2k+1) = \frac{N^2}{N} = N$ For x + D ; . . . $F_N(x) = \frac{1}{N} \frac{1}{1-q^2} \left(\sum_{n=0}^{N-1} \frac{1}{-2n} - \sum_{n=0}^{N-1} \frac{1}{2n+2} \right)$ $= \frac{1}{N} \cdot \frac{1}{1-q^2} \left(\frac{1-q^{-2N}}{1-q^{-2}} - \frac{q^2-q^{2N+2}}{1-q^2} \right)$

 $= \frac{1}{N} \frac{1}{1-q^{2}} \left(\frac{1-q^{-2}N}{1-q^{-2}} + \frac{1-q^{2}N}{1-q^{-2}} \right)$ $= \frac{1}{N} \begin{pmatrix} -\frac{q^{-2N}}{2} + 2 - \frac{q^{2N}}{2} \\ -\frac{q^{2}}{2} + 2 - \frac{q^{-2}}{2} \end{pmatrix}$ $= \frac{1}{N} \left(\frac{qN}{q} - \frac{q}{q} \right)^{T}$ $= \frac{1}{N} \frac{\sin^2(N\pi x)}{\sin^2(\pi x)} \square$

The The Fajer kernel FN is a Dirac kernel.
The The Fajer karnel F_N is a Dirac karnel. Pf The expression $F_N(x) = \begin{cases} \frac{1}{N} \frac{\sin^2(N\pi x)}{\sin^2(\pi x)} & \text{if } x \neq 0 \end{cases}$
$\int \mathbf{N} \cdot \mathbf{x} = 0$
demonstrates $F_N \ge 0$. To show $\int_{-\infty}^{1/2} F_N(x) dx = 1$, it suffices
to show $\int_{-\frac{1}{2}}^{\frac{1}{2}} D_n(x) dx = 1$, which is HW.
To show $\lim_{N \to \infty} \int_{\delta \le x \le \frac{1}{2}} F_N(x) dx = 0$, first prove $F_N(x) \le \frac{1}{N} \frac{1}{s t n^2(\pi \delta)}$
$for S \leq x \leq \frac{1}{2}$ (also HW) \Box

Them If IKN is a Dirac kernel and FEC°(S'), thun
The If $\{K_N\}$ is a Dirac kernel and $f \in C^{\circ}(S')$, then $(f * K_N)(x) \longrightarrow f(x)$ uniformly on S' .
Pf Sketch First prove
Lemme 1 $\forall \epsilon, > 0 = 30 < \delta, (\epsilon,) < \frac{1}{2} $ s.b. $\forall 0 < \delta < \delta, (\epsilon,), x \in S'$, $n \in \mathbb{N}$
$\int_{-S}^{S} f(x-t) - f(x) K_n(t) dt < \varepsilon_1$
Thin prove Lemma 2 $\forall \delta, \epsilon_2 > 0 \exists N_2(\delta, \epsilon_2) \in \mathbb{N} st. \forall n > N_2(\delta, \epsilon_2), x \in S'$
$\int_{\delta \leq t \leq \frac{1}{2}} f(x-t) - f(x) K_n(t) dt < \varepsilon_2$

Now show that YE>D JN(f, E) EN s.t. Y,	xes ¹ , ne ² ,
if $n > N(f,\varepsilon)$, then $ (f * K_n)(x) - f(x) < \varepsilon$	- which is
uniform convergence!	
· · · · · · · · · · · · · · · · · · ·	
Cor For fe C°(S'), the Cesiaro sum	
$S_{N}(x) = (f * F_{N})(x) = \frac{1}{N} \sum_{n=0}^{N-1} f_{n}(x)$	
converges uniformly to f(x) on 5' as N -> 00.	
PF FN is a Dirac Kernel, so the thm applies.	

Inversion Then For $f \in L^2(S')$, $f_N = N-Hh$ Fourier polynomial of f, $\lim_{N \to \infty} \|f - f_N\| = 0.$ $\frac{PF}{PF}$ Suppose $f \in [2(S')]$ and $\varepsilon > 0$. Since $C^{\circ}(S')$ is dense in $L^{2}(S')$, $\exists g \in C^{\circ}(S')$ with $\|f-g\| \leq \frac{s}{2}$. Since $s_N[g] \longrightarrow g$ uniformly, if also converges to g in L'norm. Thus $\exists M \in \mathbb{N}$ s.1. g-5m < 52 By $\Delta ineq$, $\|f-sM\| \le \|f-g\| + \|g-sM\| < \varepsilon$

By Best Approx'n, trig poly $\|f-f_{\mathsf{M}}\| \leq \|f-s_{\mathsf{M}}\| < \varepsilon$ Since Fourier polynomials give better approxing as N - 20, $|f N > M, \quad \|f - f_N\| \le \|f - f_M\| \le \varepsilon \qquad \Box$ isometry