2025 I. 3 Fourier series in L2(5') $B = (e_n)_{n \in \mathbb{Z}}$ for $e_n : x \mapsto e^{2\pi i n \times e} L^2(S')$ $S' = \mathbb{R}/\mathbb{Z}$ $\mathbb{R} \xrightarrow{f} \mathbb{C}$ Q Why is $e_n \in L^2(5')$? Q Why is B an orthonormal system? $\int f(x) = f(x+1)$ R/Z $\forall x \in R$ $\int |e_n|^2 = \int |e_n^2| = \int |e_{2n}| = \int |1| = 1$ La $(|e_n||=1 by n = \int_0^1 e_n \overline{e_m} = \int_0^1 e_n \overline{e_m}$

For fel2(5'), the n-th Fourier coefficient of f is $\hat{f}(n) = \langle f, e_n \rangle$ $= \int_{0}^{1} f(x) \overline{e_{n}(x)} dx$ $= \int_{0}^{1} f(x) e^{-2\pi i n x} dx \in \mathbb{C}$ The N-th Fourier polynomial of f is the projection of fonto span $\{e_{-N}, \dots, e_N\}$, i.e $f_N(x) := \sum_{n=-N}^{N} \hat{f}(n) e_n(x)$.

The Fourier series of f is $F[f](x) := \lim_{N \to \infty} f_N(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) e_n(x).$ innur prod sphie Call span $e_{N,...,e_N}$ the space of trigonometric polynomials of degree N. For $W \leq V$, project is the vector in Wclosest to v: project = argumin ||v-w||. Facts $\|f_N\|^2 = \sum_{n=-N}^{N} \|\hat{f}(n)\|^2$ monotorin cally increasing seg Thus $f_N(x)$ is the trig poly of degree N best approximating f in L'norm. (Best Approx'n Thm) Bessel's inequality $\|\|f_N\| \leq \|\|f\|$ [] IOU

· By the proof of our main theorem from Friday, $\sum |\hat{f}(n)|^2$ converges so, in particular, we have the neg Riemann-Lehesgene lemma $\lim_{n \to \pm \infty} \hat{f}(n) = 0$ • If B is an orthonormal basis, also get Parseval's identity $\|\|f\|^2 = \sum_{n \in \mathbb{Z}} \|\hat{f}(n)\|^2$ Forthcoming goal: Inversion Thm B is an orthonormal basis for L2(S1) $\underbrace{Cor} f = \mathcal{F}[f] \text{ in } L^{2}(S'), \text{ and } L^{2}(S') \cong \ell^{2}(\mathbb{Z}) \\ f \longmapsto (\widehat{f}(n))_{n \in \mathbb{Z}}.$

Equality in l' 13 not pointwise convergence. Later we will show F[f] converges abolutely a uniformly to f for f e C'(S') - and something similar holds Not an algebraic kirnel for $C^{\circ}(S')$. Convolutions & kirnels Fourier series have a usiful relationship with an operation called convolution: Fourier series: convin: rings multin Defin For $f,g \in C^{\circ}(5')$, the convolution $f * g \in C^{\circ}(5')$ is given by $(f*g)(x) := \int_{0}^{1} f(x-t)g(t) dt$.

 $t \mapsto f(x-t)g(t) \in C^{\circ}(S'), f*g \in C^{\circ}(S')$ Moral Lxc Them · Convolution is linear in each variable · Convolution is commutative f*g=g*f · Convolution is associative (f*g)*h = f*(g*h) • For $f \in C'(S')$, $g \in C^{\circ}(S')$, have $f \ast g \in C'(S')$ and (f*g)' = f'*g. • For $f,g\in C^{\circ}(S')$, $\widehat{f*g}(n) = \widehat{f}(n|\widehat{g}(n))$. TF AW. 🗆

Suppose we have a Dirac de lta function S WELCOME TO WISHFUL such that for fe C'(s') THINKING $\int S(x)f(x) dx = f(o')$ <mark>.</mark>. Then $f * S(x) = \int f(x-t) S(t) dt = f(x-0) = f(x)$ -'h $\Rightarrow \hat{f}(n) \hat{S}(n) = \hat{f}(n) \Rightarrow \hat{S}(n) = 1$ i.e. f*S=f - S is an identity for the convolution opin. Now suppose we want to show lim fn = f, and we have Kn such that $f * K_n = f_n$ and $\lim_{n \to \infty} K_n = \delta$. Then

$\lim_{n \to \infty} f_n = \lim_{n \to \infty} f_* K_n = f_* \lim_{n \to \infty} K_n = f_* S = f.$	
Dufn A Dirac kernel on S' is a sequence of continuous	
$K_n: [\cdot'/2, '/2] \longrightarrow \mathbb{R}$ such that	
(1) $K_n \neq 0$ (2) $\int_{-K_n}^{1/2} K_n(x) dx = 1$	
(3) For any $\delta > 0$, $\lim_{n \to \infty} \int_{\delta \le x \le \frac{1}{2}} K_n(x) dx = 0$ $\delta \le x \le \frac{1}{2}$	1/2
Q What do we learn about $\int_{-5}^{5} K_n(x) dx? \xrightarrow{>} 1$	

Defor The Dirichlet kernel IDN NEW is		
$D_N(x) := \sum_{n=-N}^{N} e_n(x)$		
The Fight kernel {FN N >1} is		
$F_N(x) = \frac{1}{N} \sum_{k=1}^{N-1} D_k(x)$ (see demo)		
· · · · · · · · · · · · · · · · · · ·	2025. I_5	
The For $f \in C^{\circ}(S')$, $f * D_N = f_N$ and N-1		
$f_* = f_* = \frac{1}{N} \sum_{i=1}^{N} f_{i} = \frac{1}{N} \sum_{i=1}^{N} f_{i}$		