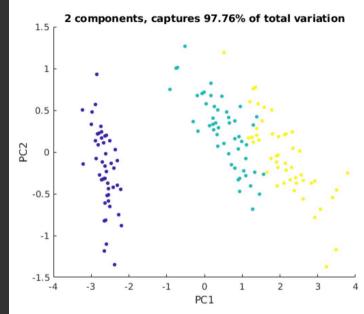
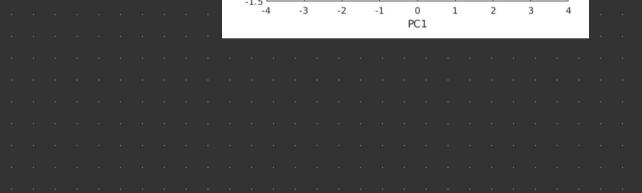
	24. XI	2.5
Goals principal component analysis		
data = parat claud		
· data = point cloud · variance & covariance · orthogonal diagonalization		
actional discone lization		
· · · · · · · · · · · · · · · · · · ·		
Suppose each trial of an experiment makes in real-	ia lued	
Suppose each trial of an experiment makes in real-		
$P = \{x_1, \ldots, x_n\} \subseteq \mathbb{R}^m$		
· · · · · · · · · · · · · · · · · · ·		
point cloud		
· · · · · · · · · · · · · · · · · · ·		
The mean of P is $\mu := \frac{1}{n} (x_1 + \dots + x_n)$		
n (n)		
The acentering of D & B = (x - 1)		
The recentering of P is $B = (x_1 - \mu + x_2 - \mu - \dots + x_n - \mu) \in [$	K	

Note The mean of the columns of B is J. Defin The covariance matrix of P is the symmetric matrix. $S = \frac{1}{n-1} BB^{\mathsf{T}} \in \mathbb{R}^{\mathsf{M} \times \mathsf{M}} \qquad (BB^{\mathsf{T}})^{\mathsf{T}} = (B^{\mathsf{T}})^{\mathsf{T}} B^{\mathsf{T}} = BB^{\mathsf{T}}$ Note $S_{ii} = \frac{1}{n-1} \prod_{j=1}^{n} (x_{ji} - m_i)^2 = variance of i-th measurement/$ variableFor $i \neq j$, $S_{ij} = \frac{1}{n-1} \sum_{j=1}^{n} (x_{ji} - \mu_i) (x_{ij} - \mu_j) = covariance of$ i-th j-th variables· Variance measures how much things differ from the mean. Its square roof is standard deviation. · Covariance measures how variables depend on each other.

Defn The total variance of P is tr(S) = Evariance of variables. E.g. m=2 $\frac{1}{2} \frac{1}{2} \frac{1}$ $5 = \begin{pmatrix} 50 & 40 \\ 40 & 50 \end{pmatrix}$ Idea Use linear algebra to racognize the similarity of these data.


Spectral Thm If $A \in \mathbb{R}^{n \times n}$ and $A = A^{T}$, then $\exists \lambda_{1},, \lambda_{n} \in \mathbb{R}$ and orthonormal nonzero vactors, such that $Av_{i} = \lambda v_{i}$. Note If $P = (v_{i},, v_{n})$ then $PP^{T} = I_{n}$ and	
$diag(\lambda_{1,,}\lambda_{n}) = P^{-1}AP$	
· For BER ^{m×n} , BB ^T = (BB ^T) ^T ∈ IR ^{m×m} and the spectral theorem applies.	
Prop BBT and BTB share the same nonzer eigenvalues. RMXM RMXM PF Take v an eigenvector of BTB with eigenvalue 270, 50	
$B^T B v = \lambda v$	

\Rightarrow (BB ^T)(Bv) = λ (Bv) [mult on left by B]
=> 2 is an eigenvalue of BBT with eigenvector BV.
$(\mathbf{B}_{v} \neq \mathbf{O}) = (\mathbf{B}_{v} \neq \mathbf{O}) = (B$
Similarly, $BB^{T}W = \lambda W \implies B^{T}B(B^{T}W) = \lambda(B^{T}W)$, so BB^{T} , $B^{T}B$
have the same nonzero eigenvalues.
Q How should un find rigenvalues when BER ??
$\underline{A} \underline{BB} \epsilon \ \mathbb{R}^{500 \times 500}$
$B^{T}B \in \mathbb{R}^{2\times 2}$ work on this $\chi^{(x)}$ quedratic $B^{T}B$ polynomial
$\rightarrow \lambda_{1,2} \lambda_{2}$ sigenvals of $B^T B$
BBT has sigenvalues $\lambda_{1,2}, \lambda_{2,0}$.


Prop The eigenvalues of BBT, 3TB are all nonnegative,						
IF Take v an eigenvector of BTB w/ eigenvalue & Then						
	Bv 2 - Bv · Bv	Since (Bv] ² ≥0	and 11/270,			
	$= (\mathbf{B}_{\mathbf{v}})^{T} (\mathbf{B}_{\mathbf{v}})$	must have $\lambda \ge 0$	🛛			
	$z v^{T} (B^{T}B) V$					
	$= v^{T} \left(\lambda v \right)$					
	$= \sum_{v \in \mathcal{V}} \left(\sqrt{1} v \right) = \sum_{v \in \mathcal{V}} \left(\sqrt{1} v \right)$					
	$= \sum_{v \in \mathcal{V}} v ^{2} \sum_{v \in \mathcal{V}} v ^{2}$					
	$covariance matrix S = \frac{1}{n-1}$		mnegative			
· · · · · · ·	al sigenvalues $\lambda_1 \geq \lambda_2 >$	$ \xrightarrow{\sim} \lambda_{m} \ge 0 $				

Let u,,..., un be the corresponding or the normal eigenvectors, these are the principal components of the data Note · total variance = $tr(S) = \lambda_1 + \cdots + \lambda_m =: T$ • The first principal component u, accounts for $\frac{\lambda_i}{T}$ of the total variance. In general, u; accounts for $\frac{\lambda_i}{T}$ of the $\frac{1}{T}$ total variance. · U, points in the "most significant" dorection. · Among ut, un points in the most significant direction. Etc.

Fact span Ju, minimizes orthogonal distance from line to cloud. E.g. 150 iris flowers measured by sepal and petal length/width peta

