	24. XI :	20
Goals · Direct sum		
· Orthogonal complement		
· Orthogonal projection		
a a a a a a a a a a a a a a a a a a a		
Dufn For U, V F-vactor spaces, their direct sum is		
$U \oplus V := U \times V = \{(u,v) \mid v \in V\}$		
with componentwise addition and scalar multiplication		
(u,v) + (u',v') = (u+u',v+v')		
$(\lambda + \lambda +$		
E_{g} , \mathbb{R}^{2} = $\mathbb{R} \oplus \mathbb{R}$		

Prop Let U,V ≤ W such that PF Linner V. O guarantees sarjectivity. If (u,v) e ker thun $u+v=0 \Rightarrow u=-v \in U \cap V$ O=VON ⇒ u=v=0 by 2 Then UOV = W Thus ker = O so the map is injective Write W=UBV as well. From now on, (V, \langle , \rangle) an inner product space over $F = \mathbb{R}$ or \mathbb{C} . Dute For SEV, the orthogonal complement of S is $S^{\perp} := \{x \in V \mid \langle x, s \rangle = 0 \; \forall s \in S \}$ y 5-15/15-5-Q Is St a subspace of V?

A $0 \in S^{\perp}$ (If $x, y \in S^{\perp}$, $\langle x + \lambda y, s \rangle = \langle x, s \rangle + \lambda \langle y, s \rangle$ = $0 + \lambda 0 = 0 \forall s \in S \Rightarrow x + \lambda y$ Prop Suppose dim V=n, S= {v, ..., vk} = V is orthonormal. e51, 1) S can be extended to an orthonormal basis (V1, ..., Vk, Vk+1, ..., Vn) of V. (2) If W= span 5, thin {Vk+1, ..., Vn} is an orthonormal basis of St=Wt. (3) If $W \leq V$, then $\dim W + \dim W^{\perp} = \dim V = n$. yex (4) If $W \leq V$, then $(W^{\perp})^{\perp} = W$. (Similar to $X^{(X \setminus Y)} = Y$.) PF I Apply G-S to any basis extension of [V1,..., Vk] (2) Let $S' = \{V_{k+1}, ..., V_n\}$, which is lin ind a orthonormal. Since S is orthonormal, $S' \in W^{\perp} \implies span S' \in W^{\perp}$ For $x \in W^{\perp}$, since Sus' is orthonormal

$\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}_{i} \mathbf{v}_{i} \rangle \mathbf{v}_{i}$		
$= \sum_{i=k+1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i = \sum_{i=k+1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i$		
e span S'		
So span $S' = W^{\perp} \implies S'$ is a basis for W^{\perp} .		
 Follows directly from D, He have (W¹)¹ = f × eV (×,y) = 0 for yeW¹} = W. 		
Now $\dim(W^{\perp})^{\perp} = n - \dim W^{\perp} = \dim W$ so $W = (W^{\perp})^{\perp}$.]	
Prop Let W≤V. Thun V= W ⊕ W [⊥] , i.e. for all y ∈ V t	mre is	
a unique weW, veW ¹ such that y=u+v.		
Call u the orthogonal projection of y onto W. If In,	.,uk (s an

J

J

orthonormal basis for W, then $u = \sum_{i=1}^{k} \langle y, u_i \rangle u_i$.	
PF Let [u,,-,uk] be an orthonormal basis for W and define	
$u = \sum_{i=1}^{k} \langle y, u_i \rangle u_i, v = y = u.$ Then $u \in W$ and $y = u + v.$	
Furthurmore, for 15j5k,	
$\langle \mathbf{v}_{j}, \mathbf{u}_{j} \rangle = \langle \mathbf{v}_{j}, \mathbf{u}_{j} \rangle$	
$z \langle y, u, \rangle - \langle \sum_{i=1}^{L} \langle y, u_i \rangle u_i, u_j \rangle$	
$= \langle \gamma, u_j \rangle - \sum_{i=1}^{k} \langle \gamma, u_i \rangle \langle u_i, u_j \rangle$	
= <y, uj="">- <y, uj="">1 [orthonormality]</y,></y,>	
= 0	
so v e W ¹ . Moral exercise : chuck W n W ¹ = O and the	
expression is unique.	

Cor The orthogonal projection u of y onto W is the vector in W closest to y: Ily-ull < Ily-wll for all WEW with equality iff U=W. PF Write y=u+v with ueW, veWL. Take weW. Then n-weW, y-neW¹ so by Pythegoras, 11y-w12 = 11y-u + u-w 12 [Get Smart] - ||y-u|| = ||y-u||² + ||u-w||² [Pythaz] ≥ ||y-n||² [||y-n||² ≥0) with equality iff ||u-w||=0 iff u=w. E.q. Let $M = \text{span}\{(1,1,0), (0,0,1)\}$. Determone the distance of y= (4,0,-1) fron W:

 $u_{2} \left(\frac{y, u_{1}}{y, u_{1}}\right) u_{1} + \left(\frac{y, u_{2}}{y, u_{2}}\right) u_{2} = 2\sqrt{2} u_{1} + \frac{-\sqrt{2}}{2} u_{2}$ 11u,12 $=(2\sqrt{2},2\sqrt{2},-\frac{\sqrt{2}}{2})$ so $y - u = (4 - 2\sqrt{2}, -2\sqrt{2}, -1 + \frac{\sqrt{2}}{2})$ with $\|y - u\| = \sqrt{\frac{67}{2}} - 17\sqrt{2} \approx 3.075$

		Te	- 	ÌC.	5		Spectral theorem
			÷.	•			Markov chains ->>> Page Rank
							cross product
							matrix groups 50(n) (esp togology 50(3)) 5L2R
							normed division algebras : quaternions
						"	SVD - songular value decomposition
							your ideas!
							· · · · · · · · · · · · · · · · · · ·