Goals · Powers of diagonalizable matrices · Graphs via matrices · Matrix powers and counting walks on graphs.	24. 21. 11
Suppose $A \in F^{n \times n}$ is diagonalizable. Then $A = P' = D = diag(\lambda_1,, \lambda_n)$, $P \in GL_n(F) = \{Q \in F^{n \times n} \}$	DP for
Powers of A?	
$A^{2} = (P^{1})DP(P^{1})DP$ $= P^{1}D(PP^{1})DP$	
$= P^{-1}D^2P = P^{-1}diag(\lambda_1^2,, \lambda_n^2)P$	

Q What about non-diag'le matrices? P'Jkp Jin Jordon form In general, $A^{\mathbf{k}} = P^{-} D^{\mathbf{k}} P$ = P^{-1} diag $(\lambda_{i}^{k}, ..., \lambda_{n}^{k}) P$ by induction, Graphs via matricus A simple graph is G=(V,E), V = vartices $E \subseteq \binom{V}{2} = \{ \{ v, v \} \mid v \neq w \in V \}$ $E_{.q.}$ $V = \{v_1, v_2, v_3, v_4\}$ $E = \{\{v_1, v_2\}, \{v_1, v_4\}, \{v_2, v_4\}, \{v_2, v_4\}, \{v_3, v_4\}\}$

Visually: vy V A walk (of length l) in G is a sequence of vertices $u_0 u_1 \cdots u_l$ such that $\{u_i, u_{i+1}\} \in E$, $0 \le i \le l-l$ E.g. In above graph, v, vy and v, v2v3vy are walks from v, to vy of lengths 1 and 3, respectively. v₄

Defn Let G=(V,E) be a graph with $V=\{v_1,...,v_n\}$. The adjacency matrix of G is the nxn matrix A=A(6) with $\mathbb{R}^{n\times n}$ $A_{ij} = 1$ {vi,vi { eE $\{v_i, v_j\} \notin E$ 0 Note Depends on choice of E.g. A v_4 V₂ ordering of

The If $A = A(G)$, then the number of walks from v_i to v_j of length λ in G is $(A^R)_{ij}$
$\frac{Pf}{MW!} = \frac{1}{10} + \frac{1}{10$
Problem For $A = A\left(v_4 \cdot \frac{v_3}{v_2}\right)$ compute A^2 , A^3 to
determine (a) # length 2 walks V_2 to V_3 , V_1 V_2 V_3 (b) # length 3 walks V_2 to V_2 . V_2 (c) 1 0 1
(b) # length 3 walks V_2 to V_2 , V_3 (0 1 0 1)
Then find all such walks.
Defn A matrix A is symmetric when A=A ^T .
Note If A= A(G), then A is symmetric.

 $\begin{bmatrix}
 2 & 1 \\
 - & 1 \\
 - & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 1 \\
 - & 0
 \end{bmatrix}$ 2 4 5 . 2

Then A is diagonalizable. PF This is a corollary of the "Spectral Theorem" Upshot Adjacency matrices are diagonalizable! Cor Given a graph 6 with n vurtices and 0≤ij≤n ∃ c1,..., cn ∈ R (independent of d) such that depend on ij #walks vi to vj of = Ĉ cr λr length d in G r=1 □ where $\lambda_{1,...,\lambda_n}$ are eigenvalues of A(G) (con w/n (counted w/ multiplieity)

Idea # length & walks vy + vj = (A¹) = $(P' \operatorname{diag}(\lambda^{l}, \dots, \lambda^{l}) P)_{ij}$

Defn A walk is closed, when it starts and ends at the same vertex. Cor The number of length I closed walks in G is $tr(A(G)^{I})$ Prop For $A \in F^{n \times n}$, tr(A) = sum of eigenvalues of Acounted according to algebraic multiplicity. Note If $g_A(x) = c(x-\lambda_1) \cdots (x-\lambda_n)$ then $tr(A) = \sum_{i=1}^{n} \lambda_i$ This sum is in $F(b/c tr(A) \in F)$ even if λ_i are not!

Pf of Prop Let F = algebraic closure of F.
$\exists P \in GL_n(F)$ such that $P'AP = T$ is in Jordan form.
The diagonal of J is $\lambda_1,, \lambda_n$. Now
$t_r(A) = tr(PJP^{-1})$
= $tr(PP^{-1}J)$ [$tr(UV)$ = $tr(VU)$]
= tr (J)
$= \sum_{i=1}^{n} \lambda_{i}^{i} + \sum_$
Cor Suppose A(6) $\in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \dots, \lambda_n \in \mathbb{C}$
listed with algebraic multiplicity. Then the number

of closed walks in G is $\lambda_1^{j} + \dots + \lambda_n^{j}$. E.g. If $A = A\left(v_{4}, \cdots, v_{2}, v_{2}\right)$, then $\chi_{A}(x) = x(x+1)(x^{2} - x - 4)$ with routs $0, -1, \frac{1+\sqrt{17}}{2}, \frac{1-\sqrt{17}}{2}$ Thus the # closed walks in G of length & is $w(l) = 0^{l} + (-1)^{l} + (\frac{1+\sqrt{17}}{2})^{l} + (\frac{1-\sqrt{17}}{2})^{l}$ White OL = { 1 / 20

0 1 2 3 4 5 6 4 0 10 12 50 100 298 spectral graph theory!