Goods · Components	24.红.15
· (Orthogonal) projection · Cauchys-Schwarz & triangle inequalities · Angles	
Fix (V, \langle , \rangle) an inner product space over $F = \mathbb{R}$ Recall x, y $\in V$ are orthogonal (written x $\perp y$ $\langle x, y \rangle = 0$.	r €.) When
Provocation Given X, y EV is there CEF such H	nat x-cy ly?

Answer $\langle x - cy, y \rangle = 0 \iff \langle x, y \rangle - c \langle y, y \rangle = 0$ $\iff c\langle y, y \rangle = \langle x, y \rangle$ f = y = 0 $f = \frac{\langle x, y \rangle}{\langle y, y \rangle} = \frac{\langle x, y \rangle}{\|y\|^2}$ $f = \frac{\langle x, y \rangle}{\|y\|^2}$ Detn The component of x along yt is c= (xy) 11/1/12 and the (orthogonal) projection of x to y is the vector $cy = \frac{\langle x, y \rangle}{\|y\|^2} y$

E.q. (1) If V - F" with ordinary inner product, then for XEV $\frac{\langle x, e_j \rangle}{\|e_j\|^2} = x_j \quad \text{for } x = (x_1, \dots, x_n),$ The projection of x to e, is x; e. (2) x = (3,2), y = (5,1) in \mathbb{R}^2 with ordinarys inner product. Then $\frac{\langle x, y \rangle}{\|y\|^2} = \frac{3 \cdot 5 + 2 \cdot 1}{5 \cdot 5 + 1 \cdot 1} = \frac{17}{26} \approx 0.65$ Jon y IF y

(3) $f(x) = \sin(x), g(x) = x \in C_{\mathbb{R}}[0, \pi/2]$ with $\langle f, g \rangle = \int_{-\infty}^{\pi/2} f_{\mathcal{J}}$ $\langle f,g \rangle = \int_{-\infty}^{\pi/2} \sin(x) \cdot x \, dx = -x \cos x \int_{-\infty}^{\pi/2} + \int_{-\infty}^{\pi/2} \cos x \, dx$ u=x dy=sin xdx du=dx v= - cos x dx + sin x $\sin x \left\{ 0 \le x \le \frac{\pi}{2} \right\}$ $\|q\|^{2} = \int_{0}^{\pi/2} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{\pi/2} = \frac{\pi^{3}}{24}$ $\langle f_{g} \rangle = \frac{24}{\pi^{3}} \approx 0.774$ and the project of sin x onto x is

11/211=1 area 11/2111/221 = 11/211 Than For x, y EV, LEF 1① ||λ×|| = |λ|||×|| ||×|| ||×|| 5in 8 3 [Cauchy-Schwarz] | {x,y} & | x || ||y|| $\frac{\langle x,y\rangle}{\|y\|^2} = \langle x,y\rangle$ $\int = \frac{\langle y, x \rangle}{\|x\|^2} = \frac{\langle x, y \rangle}{\|x\|^2}$ ₱<u></u>●,⊙ ✓ 3 If y=0, where done as 050. For y=0, let $c = \langle x, y \rangle$. Then $x - cy \perp y \Rightarrow x - cy \perp cy$. $\|y\|^2$ By Pythagoras, $\|x - cy\|^2 + \|cy\|^2 = \|x - cy + cy\|^2 = \|x\|^2$

 $\implies \|cy\|^2 \le \|x\|^2$ [since $\|x-cy\|^2 \ge 0$]. $\|\mathbf{x}\| \ge \|\mathbf{cy}\| = \|\mathbf{c}\| \|\mathbf{y}\| = \left| \begin{pmatrix} \mathbf{x}, \mathbf{y} \\ \mathbf{y} \end{pmatrix}^2 \right| \|\mathbf{y}\|$ Taking V: y=vx ineressivg $= \left| \begin{array}{c} \langle x, y \rangle \\ \|y\| \end{array} \right|$ \Rightarrow ||x|| ||y|| $\geq \langle x, y \rangle$ as desired. (4) Facts (i) $z + \overline{z} = 2 \operatorname{Re}(z)$ (ii) $\operatorname{Re}(z) \leq |z|$ Now observe $||x+y||^2 = \langle x+y, x+y \rangle$ $= \langle x, x \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle$ = ||x||² + ||y||² + (x,y) + (x,y) [conj symm]

	$= x ^{2} + y ^{2} + 2Re(\langle x,y \rangle) [(i)]$
	$\leq \times ^2 + \cdot \cdot ^2 + 2 \langle \times \cdot \cdot \cdot \cdot \rangle $ [(ii]]
	$\leq \ x\ ^{2} + \ y\ ^{2} + 2\ x\ \ y\ $ [Cauchy-Schwarz]
	$= (\times + y)^{2}$ Taking $\int \Longrightarrow$ triangle inequality.
	Defin the distance between $x, y \in V$ is $d(x, y) = x - y $.
	This makes (V, d) a metric space : $\cdot d(x,y) = d(y,x)$ $\cdot d(x,y) > 0$ and $d(x,y) = 0$ iff $x = y$

 $d(x,z) \leq d(x,y) + d(y,z)$ Note There are (many!) matrics not induced by inner products/ norms. $\cos \Theta = \frac{\|cy\|}{\|x\|} = |c| \frac{\|y\|}{\|x\|}$ Angles Idra. y y $= |\langle x, y \rangle| ||y||$ ||y_||² ||×|| = [< x, y >] 11×11 11×11 Dropping | | in numerator makes this work in all quadrants, so ...

Defn Let (V, \langle, \rangle) be an inner product space over \mathbb{R} . Than angle O between x, y e V is $\Theta := \arccos\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$ Note $\cos \Theta = \frac{\langle x, y \rangle}{\|x\| \|y\|}$ and $\langle x, y \rangle = \|x\| \|y\| \cos \Theta$ y= cos 0 +π γ= arccos(×) By Cauchy Schwarz, Kx,y>1 ≤1 1x11 Hyll

-15 (x,y) 51 so arccos makes sense. 11×11/11/1 Also have $\Theta = \arccos\left(\left\langle \frac{x}{\|x\|}, \frac{x}{\|y\|} \right\rangle\right)$ V is the unit vector in the direction of v θ x