Goals · Diagonalizability · Eigenspaces · Diagonalization algorithm
Recall $f: V \rightarrow V$ linear trans in has eigenvector $v \neq 0$ with eigenvalue λ when $f(v) = \lambda v$. Defin For dim $V = n$, a linear trans in $f: V \rightarrow V$ is diagonalizable
when either of the following equivalent conditions holds: . 3 ordered basis &= (v, w, v,) of 1/ such that
$A^{\alpha}_{\alpha}(f) = diag(\lambda_1,, \lambda_n)$ for some $\lambda \in F$
· f has a basis of eigenvectors.

E.g. $\cdot R_{\Theta} = \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ is diagonalizable iff Q=nn for some NEZ. $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is not diagonalizable for $\lambda \neq 0$. Recall If $\alpha = (v_1, ..., v_n)$ is a basis of expensectors of $A \in F^{n \times n}$ and $P = (v_1, ..., v_n)$, then $D = P^{-}AP$ is diagonal with eigenvalues on diagonal. Thus A is tragonal iff it is similar (vonjugate) to a diagonal metrix.

Recall $\chi_A(x) = det(A - xI_n)$ is the characteristic polynomial of A and λ is an eigenvalue of A iff $\chi_A(\lambda) = 0$. E.g. If $A = \begin{pmatrix} 2 & -7 & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix}$ then $X_A(x) = det \begin{pmatrix} 2-x & -7 & 3 \\ 0 & -5-x & 3 \\ 0 & 0 & 2-x \end{pmatrix}$ $= -(x-2)^{2}(x+5)$ Thus A has eigenvalues 2, -5. Luith algebraic multiplicity 2 Defin Let λ be an eigenvalue of a matrix A. The eigenspace of A for λ is $E_{\lambda}(A) := \{v \in V \mid Av = \lambda v\} = kor(A - \lambda I_n)$

E.g. (c+d) To compute $E_2 = E_2(A)$: $A - 2I_{3} = \begin{pmatrix} 2 & -7 & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} 0 & -7 & 3 \\ 0 & -7 & 3 \\ 0 & -7 & 3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{6-7} \begin{pmatrix} 0 & 1 & -3/7 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow E_2 = \ker (A - 2I_3) = \{(x, \frac{3}{4}Z, Z) | x, Z \in \mathbb{R}\}$ with basis $((1,0,0), (0, \frac{3}{4}, 1))$ $\sim \left(\left(\left(1, 0, 0 \right) \right) \right) \left(0, 3, 7 \right) \right)$

To compute $E_{-5} = E_5(A)$: $A + 5T_{3} = \begin{pmatrix} 7 - 7 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 7 \end{pmatrix} \xrightarrow{G-J} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow E_{-5} = \ker (A + 5I_{3}) = \{(y, y, 0) \mid y \in \mathbb{R}\}$ with basis (1,1,0). Fact Eigenvectors in distinct eigenspaces are lin ind. (Proved soon.) So ((1,0,0), (0,3,7), (1,1,0)) is a basis of eigenvectors for A. Set $P = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 7 \end{pmatrix}$. Then P'AP = diag(2,2,-5).

E.e. Let's modify A slightly: $A' := \begin{pmatrix} 2 & 1 & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix}$ $A = \begin{pmatrix} 2 & -7 & 3 \\ 0 & -5 & 3 \\ 0 & 0 & 2 \end{pmatrix}$
This has the same char poly- and same eigenvalues as A!
A basis for $E_{-5}(A')$ is $(-7, 1, 0)$ sime techniques as above
Problem Find a basis for $E_2(A')$.
$A'-2I, = \begin{pmatrix} 0 & 1 & 3 \\ 0 & -7 & 3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{G-J} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
$\Rightarrow \ker(A-2I_{2}) = \{(x,0,0) \mid x \in R\}$

with besis (1,0,0) There are at most two lin ind eigenvectors for A'. We conclude that A' does not admit a basis of eigenvectors ⇒ A' is not diagonalizable. Diagonalization Algorithm (1) Find eigenvalues as roots of RA

(2) For each sigenvalue λ , compute a basis of $E_{\lambda}(A)$. (3) The matrix A is diagonalizable iff the total number of basis vectors in (2) is n (for AEFnxn) If so, the vectors found are an eigenbasis of A, and if P is the matrix with columns these vectors, then $\overline{D} = \overline{P} \overline{A} \overline{P}$ is diagonal with eigenvalues on diagonal. Dufn If λ is an eigenvalue of A, its algebraic multiplicity is the # of (x-))'s in XA(x). The geometric multiplicity of λ is dive $E_{\lambda}(A)$.

Note E geom mults = E alg mults = n		
and A is diagonalizable iff both sums equal n		
iff E geon mults = n.		
IOU Vectors from different eigenspaces are lin ind.		
Determinents of endomorphisms		
Know of det as F ^{nan} ~ F 112		
End(F ⁿ)		
Q Does $det(f)$ make sense for $f: V \longrightarrow V$	linear	?

A Yes! for V finite dimit. ordered Define det (f) by choosing basis of V_ say a Than f has a matrix $A_{\alpha}^{\alpha}(f) \in F^{n \times n}$ Hope dit (f) := det A (f) - but need to show this does not depend on choice of bisis! Suppose ps is some other ordered basis of V From hu, know there exists matrix P s.t. $A_{\beta}^{p}(f) = P^{\prime}A_{\alpha}^{2}(f)P$

Thus dut $A_{\beta}^{\beta}(f) = dut (P'A_{\alpha}^{\alpha}(f) P)$ = det (P') det (A² (f)) det (P) [mult of det] = dit $A_{x}^{2}(f) \cdot \frac{dit(P)}{dit(P)}$ = dut Ax (f) if CD=I, thin So the value of dit (f) does not depend on choice of basis. dut (CD) = dut I dit C · dit D = (=> det D = the

This allows us to extend the defn of characteristic polynomial: if $f: V \rightarrow V$ linear, dim $V < \omega$ then $\Re_{f}(x) = det(f - x \cdot id_{v})$ i.e. choose basis a of V $\chi_{f}(x) = du \left(A_{x}^{\alpha}(f) - x \cdot I \right)$ Then eigenvalues of $f \iff roots$ of $\mathcal{A}_{f}(x)$.