24. X 8 · Eigenvectors with distinct sigenvalues are Goals linearly independent · Algebraic & geometric multiplicity · Jordan normal form Recall If $f: V \longrightarrow V$ linear, then $\chi_{p}(x) = \det(A_{\alpha}^{2}(f) - x I_{n})$ for a some/any ordered basis of V and n=dimV, Prop Suppose f: V -> V linear with eigenvectors V, ..., VEEV corresponding to eigenvalues $\lambda_{i,...}, \lambda_{k}$, $\lambda_{i} \neq \lambda_{j}$ for $i^{2}j$. Then V, ,..., Vk are linearly independent. If Proceed by induction on k

k=1 Eigenvactor, are nonzero. $k \ge 1$ For induction, suppose $V_{1,...,V_{k-1}}$ are lin ind and that $M_1V_1 + \cdots + M_kV_k = 0$. $MTS \quad M_1 = \cdots = M_k = 0$ Apply f- The ide to this expression: $(f-\lambda_k i d_v)(\mu_i v_i + \dots + \mu_k v_k) = (f-\lambda_k i d_v)(0)$ $\Rightarrow \mu_1 f(v_1) + \cdots + \mu_k f(v_k) - (\mu_1, \lambda_k v_1 + \cdots + \mu_k \lambda_k v_k) = 0$ $\Rightarrow \mu_1 \lambda_1 \vee_1 + \cdots + \mu_k \lambda_k \vee_k - (\mu_1 \lambda_k \vee_1 + \cdots + \mu_k \lambda_k \vee_k) = 0 \quad (v_1 \text{ eigen} f)$ $\Rightarrow \left(\mathcal{M}_{1} \left(\lambda_{1} - \lambda_{k} \right) \mathbf{v}_{1} + \cdots + \mathcal{M}_{k-1} \left(\lambda_{k-1} - \lambda_{k} \right) \mathbf{v}_{k-1} \right) + \mathcal{M}_{k} \left(\lambda_{k} - \lambda_{k} \right) \mathbf{v}_{k} = 0$ $\Rightarrow \mathcal{M}_{1} \left(\lambda_{1} - \lambda_{k} \right) = \cdots = \mathcal{M}_{k-1} \left(\lambda_{k-1} - \lambda_{k} \right) = 0 \qquad \text{tlin ind } \mathbf{v}_{1}, \dots, \mathbf{v}_{k-1}$

 $\Rightarrow \mu_1 = \dots = \mu_{k-1} = 0$ [λ_i distinct] $\Rightarrow \mu_{k} \nu_{k} = 0 \Rightarrow \mu_{k} = 0 \quad \text{for} .$ Thus V1,..., Ve are lin ind, completing the induction. Cor If f: V -> V has dim V distinct eigenvalues, then f is diagonalizable. With repeated eigenvalues, I might be diagonalizable, might not. Note Now certain that diagonalization algorithm works! Multiplicity Multiplicity Defn A polynomial $p(x) \in F(x)$ splits over F when $\exists c, \lambda, \dots, \lambda_n \in F$ such that $p(x) = c(x-\lambda_1) \cdots (x-\lambda_n)$.

E.g. $x^{2}+|$ splits over \mathcal{F} but not over \mathbb{R} . (x+i)(x-i)Fundamental Theorem of Algebra Every $p(x) \in \mathbb{C}[x]$ splits over \mathcal{F} . Prop Suppose fiV -> V linear, dim V = n < 00. If f is diagonalizable, then $\chi_{f}(x)$ splits over f. Pf If f is diagonalizable, then Fordered basis 2 of V such that $A_{i}(F) = D = diag(\lambda_{i}, \dots, \lambda_{n})$ with $\lambda_{i} \in F$. Thus $\chi_f(x) = dut (D - x I_n) = (\lambda_1 - x) \cdots (\lambda_n - x)$ $= (-1)^{\prime\prime} (\kappa - \lambda_1) \cdots (\kappa - \lambda_n)$ The converse fails: $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ has characteristic polynomial $(x-1)^2$ but dim E, =1.

Defn Let dim $V < \infty$. The geometric multiplicity of an eigenvalue λ of a linear transformation $f: V \rightarrow V$ is
dim $E_{\lambda}(f)$.
The algebraic multiplicity of λ is the number of times
$(x-\lambda)$ divides $\chi_f(x)$.
Prop The geometric multiplicity of an eigenvalue of f is E its algebraic multiplicity.
Pf Let v,, vk be a basis of Ex (f) extend to a basis v,, v, of V.
The matrix for f wrt this basis looks like
$A = \begin{pmatrix} \lambda I_k & B \\ O & C \end{pmatrix}$

Thus $\chi_f(x) = det \left(\begin{array}{c} (\lambda - x) I_k \\ 0 \\ C - x I_{n-k} \end{array} \right)$ induction + Laplace expansion $= (\lambda - x)^{k} \chi_{c}(x)$ $C \star \mathcal{I}$ so $k = \dim E_{\chi}(f) \leq algebraic multiplicity of <math>\chi$ Jordan normal form I ≤ geore mult ≤ alg mult Loud = for diagonalizability A Jordan block of size & for NEF is the k×k matrix $\mathcal{J}_{\mathbf{k}}(\lambda) := \begin{pmatrix} \lambda \\ \lambda \\ \ddots \end{pmatrix}$ $[J_{4}(3)] = \begin{bmatrix} 0.3\\0.0\\0.0\end{bmatrix}$ $\mathcal{T}_{1}^{*}(\lambda) = (\lambda)$

A matrix is in Jordan form when it is a block sum of Jordan blocks : $\mathcal{J}_{k}(\lambda_{r}) \oplus \cdots \oplus \mathcal{J}_{k}(\lambda_{r}) :=$ 2102 E.g. $J_2(2) \oplus J_2(2) \oplus J_1(5) \oplus J_3(4) = ()$ 0 1

The Suppose dim V < 00, f: V -> V linear with Xf (x) split over F. Then I ordered basis & of V such that A. (f) is in Jordan form, the Jordan form of f is unique up to permutation of Jordan blocks. 75 Use the structure theorem for finitely generated modules over a principal ideal domain - Math 332. 🛛 Note f is diagonalizable iff all its Jordan blocks have size 1.

Chebysher polynomial of 1st type $U_n(\cos x) = \cos(nx)$ det $(\mathcal{N}^{\mathbf{v}})$ (\times) 2x