24. K_28 Goals . Laplace expansion of det - Existence & uniqueness of dut Defn For AEF^{n×n}, I≤i,j≤n, sut Aile F^(n-1)×m-1) to be the matrix created by deleting the ith row and j-th column rot 23 rd power from A. E.g. If $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$, then $A^{2.3} = \begin{pmatrix} 1 & 2 & 4 \\ 9 & 10 & 12 \\ 13 & 14 & 16 & 16 \end{pmatrix}$ Thin [laplace expansion] Suppose AEF^{n×n} and Isken. Then det $A = \sum_{j=1}^{k} (-1)^{k} A_{kj} dut (A^{kj})$

expansion of det A along the k-th row of A $\frac{E_{.q.}}{c d} = (-1)^{l+1} a d (d) + (-1)^{l+2} b d (c)$ = ad - be vir a the the the $d_{1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 5 & 6 & 7 \end{pmatrix} = (-1)^{2+1} O d_{1} \begin{pmatrix} 2 & 3 \\ 6 & 7 \end{pmatrix} + (-1)^{2+2} \cdot 4 d_{1} \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$ + $(-1)^{2+3}$ O det $\begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}$

= 4(1.7-3.5) = -32
Note $(-1)^{k+j}$ makes a "sign chickerboard": $\begin{pmatrix} +-+-\cdots\\ -+-+\cdots \end{pmatrix}$
This can be a helpful mnemonie when $\begin{pmatrix} -+-+ \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$
Cor [Laplace expansion along columns] For $A \in F^{n \times n}$, $1 \le k \le n$, $l \ge k \le n$, $l \ge k \le n$,
PF We know dit A = det A ^T and this is Laplace expinationg
the kith row of AT.

Question What is the determinant of $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 6 \\ 4 & 7 & 0 \end{pmatrix}$? $-6 \cdot det \begin{pmatrix} 1 & 3 \\ 4 & 7 \end{pmatrix} = -6 \cdot (-5) = 30$ Pf sketch for laplace Expansion Thm By permutation expin, dut A = [sgn(r) Îl Air(i). reten Factor out all the Akj terms ? dut $A = \sum_{j=1}^{n} A_{kj} \sum_{\sigma \in \mathcal{G}_n} \operatorname{sgn}(\sigma) \prod_{\substack{i \in \mathcal{I} \\ i \in \mathcal{I}}} A_{i \sigma(i)}$ $\sigma(k) = j \quad i \neq k$

Need to show this is (-1)^{k+j} dit A^kj The part has all the correct Aij terms. Must check that the sign is off by (-1)^{k+j} (hint: swap rows). There is a unique multilinear, alternating, normalized function det: $F^{n \times n} \longrightarrow F$. If Inspired by Laplace expansion, make the following

recursive definition of a function $d: F^{n \times n} \longrightarrow F$:	
$n=1 \qquad d(a)=a$	
$n > 1 d(A) = \sum_{j=1}^{n} (-1)^{j+j} A_{jj} d(A^{j})$	
Check d is multilin, alt, normalized.	
Then d is a well-defined determinant function.	
Our work with det & row operations shows that all	
determinant functions are determined by a sequence	
of row operations to rref:	
if E,, Eg elementary s.t. rref(A) = E1 ~~ E, A	
then det $A = \frac{det(rruf(A))}{det(E_{k})\cdots det(E_{l})}$	

Thus any two det functions are in fact the same! Time permitting, the general linear group: let F* = F>105, GLn(F) = F^{n×n} be the invertible n×n matrices. Thun $GL_{n}(F) = dut^{-1}F^{*} = \{A \in F^{n \times n} \mid det A \in F^{*}\}$. . . **V** . . . F^{n×n} dut F UI UI dut A 70 GL, (F) dut F* group under matrix multiplication

#3	$\mathbb{R}^2 \xrightarrow{t} \mathbb{R}^2$	$A_{E}^{P}(t) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
	$e_{1} \longmapsto (1,1) + 3(1,-2)$ $= (4,-5)$	$\beta = \left(\left(1, 1 \right) \right) \left(1, -2 \right) \right)$
	$e_2 \longrightarrow 2(1,1) + 4(1,-2)$ = $(6,-6)$	$\Rightarrow A_{\mathbf{x}}^{\mathbf{x}}(t) = \begin{pmatrix} 4 & c \\ -5 & -6 \end{pmatrix}$
	$\mathbb{P}^2 \xrightarrow{t} \mathbb{D}^2$	S = ((0,1), (1,1)) S = ((-1,0), (2,1)) $ S = ((1,2), (1,0)) S = ((1,2), (2,1))$
Rep 5	$\int p = Q \left(\int R_{ep} \right) P = Q \left(\int R_{ep} \right) P = D^{2}$	$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \qquad Q = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$
	$A_{\varsigma}^{r}(t)$	$Q^{-1} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$

· · · · · · · · · · · · · · · · · · ·	t(0,1) = (6,-6)
$A_{s}^{\mathbf{Y}}(t) = Q^{-1} A_{\varepsilon}^{\varepsilon}(t) P$	$t(1,1) = t(e_1) + t(e_2)$
$= \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 6 \\ -5 & -6 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$	= (4, -5) + (6, -6)
$= \left(\begin{array}{ccc} -1 & 2 \\ -2 & -1 \end{array}\right) \left(\begin{array}{ccc} -2 \\ -2 & -1 \end{array}\right)$	
$= \begin{pmatrix} -18 & -32 \\ -6 & -11 \end{pmatrix}$	
$-18 \cdot (-1, \overline{v}) - 6(2, 1) = (6, -6) t$ -32 \cdot (-1, \vec{v}) - 11(2, 1) = (10, -11) v	