Goals · det A = det A ^T	24. 🔀	. 16
· det is multilinear & alternating in columns as well		
· Compute det with row + col ops.		
· Permutation matrices		
· Sign of a permutation		
Defn A & F ^{n×n} is an elementary matrix when it is a	blained	
from In by a single row operation.		
$\underbrace{E}_{g}, \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		

Question Let EEFnxn be an elementary matrix corresponding to a particular rou operation. How can you describe EA for AEF^{n×m}? Guass: $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\begin{pmatrix} a \\ c \\ c \\ d \end{pmatrix} = \begin{pmatrix} c \\ a \\ b \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+\lambda c & b+\lambda d \\ c & d \end{pmatrix}$ ($\lambda 0$)(a b) (c d) = ($\lambda a \lambda b$) (c d) = (c d) Answer (moral exc) It implements E's corresponding row op on A.

Note By G-J reduction, Felementary matrices E.,..., Ee s.t. $rruf(A) = E_1 E_{1-1} \cdots E_2 E_1 A$ Thus For all $A \in F^{n \times n}$, dut $A = dut A^T$. E.g. det $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$ dit $\begin{pmatrix} a \\ b \\ d \end{pmatrix} = ad - cb$ For the general case, we need some additional facts. The For all $A, B \in F^{n\times r}$, dut(AB) = dut(A) dut(B). dat is multiplicative Pf Upcoming HW! [] dut (A+B) = det A + det B

Prop (a) For AEF^{1×M}, BEF^{m×n}, (AB)^T = B^TA^T. (b) For $A \in F^{n \times n}$ invartible, $(A^T)^{-1} = (A^{-1})^T$. Pf (a) is part of your hw. (id Fn) Lt f= mapA=A. (b) $id = f \cdot f^{-1} \xrightarrow{f^*} id = id_{F^*}^* = (f^{-1})^* \circ f^*$ So f = map = A'. $\Rightarrow I_n : (A^{-1})^T A^T \square$ taken matis so $(A^{-1})^T = (A^T)^{-1}$ Lemma Let E be an elementary metrix. Then det E = det E^T #0. Pf(1) If $I_n \xrightarrow{r \leftrightarrow r} E$, then $E = E^T$ and $det E = -1 = det E^T$ (2) If $I_n \xrightarrow{r_i \to \lambda r_i} E$, then $E = E^T$ and $det E = \lambda = det E^T$. (3) If $I_n \xrightarrow{r_i \to r_i + \lambda r_j} E$ for $i \neq j$, then

 $I_n \xrightarrow{r_j \to r_j + \lambda r_i} E^T \quad and \quad det E = 1 = det E^T \quad \Box$ Pf that dut A = dut A^T First suppose reaf (A) # In. Then rank (A) = rank $(A^{T}) < n$, so dut $A = 0 = dut A^{T}$. Now assume row cank = col rruf (A) = In. Take elementary matrices $E_1, ..., E_L$ s.t. rank: $Tn = E_L - E_1 A$ $(JT) \Rightarrow I = dut (E_L) - dut (E_1) dut A$ Also $I_n = I_n^T = (E_1 \cdots E_1 A)^T = A^T E_1^T \cdots E_n^T$ $dat() = dat(A^T) dat(E_1^T) \cdots dat(E_n^T)$ Hance det A = det (A^T). Note Target of det is F which is commutatives ! And det multin!

Cor det is multilinear & alternating as a function of the columns of the input matrix. Pf ()^T swaps rows 2 columns and det A = det A^T. □ E.q. det $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 3 \end{pmatrix}$ = 0 b/c 1st, 3rd columns are equal. + det alternating in cols. Defen A permutation of a set X is a bijection $\sigma: X \longrightarrow X$. If T is another permutation, then so is o.T. The set Ex of permutations of X together with the binary operation.

If X = {1,2,..., n}, then is called the symmetric group of X we denote this by Gn. Moth 332: (G, ·) is a set G + binary ep : G×G ->G s.t. 'is assoc, Jidentity for and two-sided inverses for E.q. There are six elements of G3: In general, |Gn = n! Defn For $\sigma \in G_n$, the permutation matrix corresponding to σ is Poe Faxa with i-throw $e_{\sigma(i)}$. I.L., Po is obtained from In by permuting its columns according to σ . E.g. $\frac{1}{2}$, \frac

Check (1) If A has rows r, , r, then PrA has i-th row row . (2) $P_{\sigma} e_{\sigma(i)} = e_{i}$ (3) $P_{\sigma}P_{\tau} = P_{\tau,\sigma}$ Order of σ, τ swaps. Defen The sign of a permutation of Gn is $sgn(\sigma) = dut(P_{\sigma}) = \pm 1$. If $sgn(\sigma) = 1$, call σ even, if $sgn(\sigma) = -1$, call σ odd. Fact (Math 332) Every permutation is a composition of transpositions, so Por is obtained from In by some number of column swaps. Each swap changes det by a factor of -1 (and det $I_n = 1$).

Thus squb (o) = (-1) # transpositions for o elt] takes many values, but all have same parity	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Thm (Permutation expansion) For ACF ^{n×n} ,	
det A = E Sgn(0) A10(1) A20(2) "Anr(n) GEBN Thus det A is a homogeneous degree a polynomial in the entries of A	