Thus squb (o) = (-1) # transpositions for o elt] takes many values, but all have same parity	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Thm (Permutation expansion) For ACF ^{n×n} ,	
det A = E Sgn(0) A10(1) A20(2) "Anr(n) GEBN Thus det A is a homogeneous degree a polynomial in the entries of A	

E.q. a_{11} $a_{12} \quad a_{13}$ a_{21} a_{22} a_{23} $a_{11}a_{22}a_{33}$ a_{31} a_{32} a_{33} $3 \longrightarrow 3$ $\frac{1}{2}$ $\left(egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
ight)$ $-a_{12}a_{21}a_{33}$ $3 \longrightarrow 3$ a_{11} a_{12} a_{13} $-a_{13}a_{22}a_{31}$ $1 \longrightarrow 1$ $\left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{array} \right)$ $^{2}_{3}$ \times $^{2}_{3}$ $-a_{11}a_{23}a_{32}$ a_{31} a_{32} a33 $\begin{array}{c}1\\2\\3\end{array}$ $\left(egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
ight)$ $a_{12}a_{23}a_{31}$ Exc Check that $\frac{1}{2}$ a_{11} a_{12} a_{13} a_{21} a_{22} a_{23} $a_{13}a_{21}a_{32}$ a31 a_{32} 3 a33 permutation expansion gives dut (a b 613 an o so det azi azz a23 Sum = ad - bc 2

Pf of Thin We want to compute det $A = det(A_n e_1 + A_{12}e_2 + \cdots + A_{1n}e_n, \dots, A_{n_1}e_1 + A_{n_2}e_2 + \cdots + A_{n_n}e_n)$. Expanding by multilinearity, we get n° terms that look like $A_{1j}, A_{2j} - A_{nj} dut (e_{j}, e_{j}, e_{j}).$ But if jk je for any ktl, then e; will be dreplicated in the det exprussion, which will thus be O by the alternating property. As such, the only possible contributors to det A are of the firm $A_{1\sigma(1)} A_{2\sigma(2)} \cdots A_{n\sigma(n)} dut (e_{\sigma(1)}, e_{\sigma(1)}, \dots, e_{\sigma(n)})$ rows of P_{σ}

= 5gn (0) [[Aio(1) for ore Gn. Polynomial interpolation Suppose we have a points $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$. We expect there is a degree n-1 polynomial interpolating between the points: $p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ with $p(x_1) = y_1$ for $1 \le i \le n$.

To find a o, ..., an ..., consider the augmented matrix $\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & y_1 \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} & y_2 \end{pmatrix}$ $\left(1 \times_n \times_n^2 \cdots \times_n^{n-1} \right)$ Vandermonde metrix V & R^{n×n} The system $p(x_i) = y_i$, $i \leq i \leq n$, has a solution iff det $V \neq D$. Can we compute dit V? Yes - via change - of basis!

Consider the linear transformation
$f: \mathbb{R}[x_{\leq n-1}] \longrightarrow \mathbb{R}^n$
$p(x) \rightarrow (p(x_{n}), \dots, p(x_{n}))$
Let $\mu = (1, x,, x^{n-1})$, $E = (e_1,, e_n)$.
Thurs $A_{\mu}^{E}(f) = V$.
Now consider a new ordered basis
$ \alpha = (1, x - x_{1}, (x - x_{1})(x - x_{2}), \dots, (x - x_{1})(x - x_{1})) $ of $\mathbb{R}[x]_{\leq n-1}$.

Check Since the i-th term of a is monic of degree	i		
(i.e. x^{i} + (lower order terms)), $A^{M}_{\alpha}(id_{R[x]_{\leq n-1}})$ is up	per		
triangular with 15 on The diagonal.			
Thus dut A'_{x} (id $R[x]_{\leq n-1}$) = 1.			
Ue have $A_{\alpha}^{E}(f) = A_{\mu}^{E}(f) A_{\alpha}^{\mu}(id) = V \cdot A_{\alpha}^{\mu}(id)$			
\Rightarrow dut $A_{\alpha}^{\xi}(f) = dut V$			
Evaluating the & polynomials at x1,, xn, we also	hare		

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Δ ^ξ (C) -	$ X_2 - \varkappa_1 \rangle O$
	$1 \times_{3} - \times_{1} (X_{3} - X_{2})(X_{3} - X_{1}) \cdots 0$
	$1 x_{n} - x_{1} (x_{n} - x_{1})(x_{n} - x_{2}) \cdots (x_{n} - x_{n})(x_{n} - x_{2}) \cdots (x_{n} - x_{n-1})$
which is lowe	r triangular with deturminant the product of
which is lowe its diagonal	r triangular with deturminant the product of entries. Thus
which is lowe its diagonal	$x triangular with deturminant the product of entries. Thus det V = \Pi (x_j - x_i)x_i < j \le n$

We have det
$$V = 0$$
 iff some $x_i = x_j$, $i \neq j$.
If det $V \neq 0$, then $V^{-1}\begin{pmatrix} \psi_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_0 \\ a_{n-1} \end{pmatrix}$ where
 $p(x) = a_0 + a_1 x + a_{n-1} x^{n-1}$ interpolates between the points (x_i, y_i) .
Note $(\det V)^2 = :$ discriminant of a polynomial p with
distinct roots $x_1, ..., x_n$ — important in Galois
theory.