24. 2.1 Change of bassis Let $\alpha = (v_1, \dots, v_n), \beta = (u_1, \dots, u_m)$ be ordered bases of F", F" resp. If f: F" -- F" is a linear transformation, $F^{n} \xrightarrow{f} F^{m}$ Repa Fⁿ — Fⁿ commutes. A^B_a(f) Z conflating A^D_a(f) E F^{MXn} and its mp Each map has a "matrix name" with respect to the standard ordered bases of F", F";

Fⁿ A F^m $m \int 7$ $\int N' Q$ $F^{n} \longrightarrow F^{m}$ B Note Repaire, les les wij so $M^{-1} = \left(\begin{array}{c} 1 & 1 & 1 \\ v_{1} & v_{2} & \dots & v_{n} \\ 1 & 1 & 1 \end{array} \right) = P \quad and \quad N^{-1} = \left(\begin{array}{c} 1 & 1 & 1 \\ w_{1} & w_{2} & \dots & w_{m} \\ 1 & 1 & 1 \end{array} \right) = :Q$ Thus $B = Q^{-1}AP$ change of basis formula

	E.g. Consider the linear transformation $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x,y,z) \longmapsto (x+3y+2z, 2y+z)$ $e_1 \longmapsto (1,0)$ $e_2 \longmapsto (3,2)$ $e_2 \longmapsto (3,2)$	
	with (std basis) matrix $A = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix}$	
	Choose ordered bases $\alpha = ((1,0,0), (1,1,0))$ of \mathbb{R}^{3}	
	$\beta = ((0,1), (1,1)) \text{of } \mathbb{R}^{2}$	
	To find $A^{\beta}_{\alpha}(f)$, cruate	

$\mathcal{P}_{\mathbf{a}} = \left(\begin{array}{cccc} \mathbf{a} & \mathbf{b} & \mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} \mathbf{c} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ c$
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & $
Compute Q^{-1} : $\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$
$\mathcal{F}_{\alpha} = \mathcal{A}_{\alpha}^{\beta}(f) = \mathcal{Q}^{-1}\mathcal{A}\mathcal{P} = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
$= \begin{pmatrix} -1 & -2 & -3 \\ 1 & 4 & 6 \end{pmatrix} \cdot \qquad \qquad$

Check: f(1,0,0) = (1,0) = -(0,1) + (1,1)f(1, 1, 0) = (4, 2) = -2(0, 1) + 4(1, 1)f(1,1,1) = (6,3) = -3(0,1) + 6(1,1)Important special case $V = W = F^n$, $\alpha = \beta = (v_1, ..., v_n)$ Let $P = (v_1 \cdots v_n)$ If $A \in F^{n \times n}$ and $B = A^{\alpha}_{\alpha}(A)$, then ~ Fnd A Fnd but bad i.e. $B = P^{-1}AP$ P⁻¹ P⁻¹ of : punfamiliar F" ----> F"

We say B is formed by conjugating A by P. E.g. Let $A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$, $\alpha = ((1,1), (-1,0)$) Then $P = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ and (check) $P^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$ Thus $B = P^{-1}AP = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ Huh! B = A in this case !

Chuch: $A\left(\begin{pmatrix} 1\\ 1\\ \end{pmatrix}\right) = 2\left(\begin{pmatrix} 1\\ 1\\ \end{pmatrix}\right) + \left(\begin{pmatrix} -1\\ 0\\ \end{pmatrix}\right) = \left(\begin{pmatrix} 1\\ 1\\ 2\\ \end{pmatrix}\right)$ $A\begin{pmatrix} -1\\ 0 \end{pmatrix} = -\begin{pmatrix} 1\\ 1 \end{pmatrix} + \begin{pmatrix} -1\\ 0 \end{pmatrix} = \begin{pmatrix} -2\\ -1 \end{pmatrix}$ Question What does A= P'AP mean algebraically? And geometrically? PA = P(P'AP) $\begin{array}{cccc} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ = (PP') AP = AP A and P commute!

E.g. Luf $\begin{pmatrix} x \\ k \end{pmatrix} = \frac{x(x-1)\cdots(x-k+1)}{k!} \in \mathbb{R}[x]$. For instance, $\begin{pmatrix} x \\ 0 \end{pmatrix} = 1$ R[x] < 3 $(\mathbf{x}_{1},\mathbf{y}_{2}) \in \mathbf{x}_{2}$ as R4 0 $\binom{x}{x} = \frac{x(x-1)}{2} = \frac{1}{2}x^{2} - \frac{1}{2}x$ $\begin{pmatrix} x \\ 3 \end{pmatrix} = \frac{x(x-1)(x-2)}{3!} \div \frac{1}{6}x^3 - \frac{1}{2}x^2 + \frac{1}{3}x \qquad \begin{cases} x^2 \leftrightarrow e_3 \\ x^3 \leftrightarrow e_4 \end{cases}$ with columns the (1, x, x2, x3) coordinates Set $P = \begin{pmatrix} 0 & 1 & -1/2 & 1/3 \\ 0 & 0 & 1/2 & -1/2 \end{pmatrix}$ $\frac{\partial f}{\partial f} \left(\begin{pmatrix} x \\ o \end{pmatrix} \right) \left(\begin{pmatrix} x \\ i \end{pmatrix} \right)$ 0 0 0 16 0

Gut $R[x]_{<3} \xrightarrow{d} R$	[x] _{E3} where	A rapresents	differentiation
P^{-1}	(p) in t	$he \begin{pmatrix} x \\ h \end{pmatrix}$ basis.	
$\mathbb{R}[x] \longrightarrow \mathbb{R}$	↓ 2(×?,,		
$\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} + $			
In the xt basis,	$\frac{d}{dx} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$		
· · · · · · · · · · · · · · · · · · ·	(1 2 0 0) (0	> / > > /	, o o o \
Thus $A = P^{-1} \frac{d}{dx} P =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{c} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{array}\right)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

0 1 - 1/2 1/2 \ 001-12 000 O O O O $\frac{d}{dx}\left(\frac{1}{2}x^{2}-\frac{1}{2}x\right)=x-\frac{1}{2}$ Now chuck: $\frac{d}{dx}\begin{pmatrix} x\\ z \end{pmatrix} = \begin{pmatrix} x\\ 1 \end{pmatrix} - \frac{1}{2}\begin{pmatrix} x\\ 0 \end{pmatrix}$ $\frac{d}{dx}\begin{pmatrix}x\\o\end{pmatrix}=0$ $\frac{d}{dx} \begin{pmatrix} x \\ i \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$ $\frac{d}{dx}\begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} \qquad \frac{d}{dx}\begin{pmatrix} x \\ 3 \end{pmatrix} = \begin{pmatrix} x \\ 2 \end{pmatrix} - \frac{1}{2}\begin{pmatrix} x \\ 1 \end{pmatrix} + \frac{1}{3}\begin{pmatrix} x \\ 0 \end{pmatrix}$ $\frac{d}{dx}\begin{pmatrix} \frac{1}{6}x^3 - \frac{1}{2}x^2 + \frac{1}{3}x \end{pmatrix} = \frac{1}{2}x^2 - x + \frac{1}{3}$ Fact The entries of P are $\frac{1}{n!}s(n,k)$ for s(n,k) the (signed) Stirling numbers of the first kind.

The entries of P' are k! { } for { } / the Stirling numbers of the second kind. Fact A polynomial takes Z to Z iff it is an integer liner combo of binomial polynomials (x). I.e. a, +a, x + ··· + a, xn takes Z to Z iff $P^{-1}\begin{pmatrix}a\\i\\a\\n\end{pmatrix}$ is a vector with integer coordinates. (See Tao blog post on Zulip.)