24.区.6 · Algebra & geometry of systems of linear eq'ns Goals · Intro to Gaussian elimination / row reduction Note Today, F= R. Non-geometry work over any field. Example 1 Solve 3x+2y=5 (system of linear egns 2x-y=1,) in 2 variables x,yMultiply 2nd eq'n by 2, then add eq'ns to eliminate y: 3×+2y=5 + 4x - 2y = 2 $7x = 7 \Rightarrow x = 1$

Sub x=1 onto first egn to get	
$3\cdot 1+2y=5 \Rightarrow y=$	> [
Thus x = y = 1 is the unique solution.	
Geometrically: (3,2) (2,-1) (3,2) (3	
Quistion What is the relationship bir	2x-y=1 and $(2,-1)$? 3x+2y=5 and $(3,2)$?

Example 2 System -9x - 3y = 6 (1) 3x + y = -2 (2) Here (1) = -3. (2) so they have the same solutions. Example 3 System $-9x - 3y = 6 - \frac{3}{3} + y = -2$ 3x+y=-1 Cannot both be true! Thus no solutions. parallel lines - same normal vectors!

Idea: Transform a system into a new one e (a) same set of solutions (b) evident solutions Hambda # Legal transformations: (1) Multiply an eq'n by $\lambda \in F^* = \{x \in F$	sith			
 (a) same set of solutions (b) evident solutions 4 \lambda # Legal transformations: (1) Multiply an eq'n by λε F[×] = { xε F 				
 (b) evident solutions Legal transformations: (1) Multiply an eq'n by λε F[×] = {xε F 				
Legal transformations: (1) Multiply an eq'n by $\lambda \in F^* = \{x \in F \in F \}$				
(1) Multiply an eqn by $\lambda \in F^* = \{x \in F\}$				
	×.≠	0}		
(2) Juap two egins				
(3) Add a multiple of one eg'n to anoth	ur -			
Discuss Why are these "legal"?				

Augmented matrices	
$ \begin{array}{c} x + 2y + z = 0 \\ x + z = 4 \end{array} \left(\begin{array}{c} & 2 & & 0 \\ & 0 & & 4 \end{array} \right) $	Just record the coefficients!
x + y + 22 = 1 1 2 1 / Notation: r: = i-th row of augmented matrix	
Now eliminate: elim x from 2nd egn	
$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 4 \end{pmatrix} \xrightarrow{r_2 \to r_2 - r_1} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & 0 & 4 \end{pmatrix}$	
elim × from 3rd equ	

from 3rd egn in 2nd egn $\begin{array}{c} r_{1} \rightarrow -Lr_{2} + r_{1} \\ \hline \\ r_{1} \rightarrow -r_{3} + r_{1} \\ \hline \\ r_{1} \rightarrow -r_{3} + r_{1} \\ \hline \\ r_{1} \rightarrow -r_{3} + r_{1} \\ \hline \\ 0 & 1 & 0 \\ \hline \\ 0 & 1 & 0 \\ \hline \\ -2 \\ \hline \\ r_{1} \rightarrow -r_{3} + r_{1} \\ \hline \\ 0 & 1 & 0 \\ \hline \\ -2 \\ \hline \\ 0 & 0 & 1 \\ \hline \\ -1 \\ \hline \end{array} \right)$ $r_1 \rightarrow -2r_2 + r_1 = 0$ Thus the unique sola is (x, y, z) = (5, -2, -1). Question Check this!

Example 4 Solve x+2y+z=0					
x +z = 4					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
The second se					
	14				
	-2				
]-1,				
	• • •				
and thus $k = 4$, $y = -2$, $0 = -1$ \gtrsim					
\mathbf{v}					
There are no sol'ns to this system.					

Example 5 Anothur small modification:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
So $x + z = 4$ $y = -2$ \implies solin set $\{(x, -2, 4-x) \mid x \in \mathbb{R}\}$ $0 = 0$ a line in \mathbb{R}^3
Note Each row reduction ended in "reduced echelon form" To do : (a) define this (b) prove Gaussian reduction always gives this form