MATH 201: LINEAR ALGEBRA
HOMEWORK DUE FRIDAY WEEK 8

Problem 1. Let

1 -2 1 2
2 -4 1 0
A= 0 0 -1 0
0 0 0 5

(a) Find elementary matrices F', ..., Ey such that FE; - - - E2 E7 A is the reduced echelon form of A. (Check
your work.)

(b) Compute det A via row operations.

(c) Compute det A via permutation expansion

(d) Compute det A via Laplace expansion (along a row or column of your choosing).

Problem 2. In this exercise, we will prove that the determinant is multiplicative, that is, that for n x n
matrices A and B,

det(AB) = det(A) det(B).
We break the problem into two parts, depending on whether det(B) is zero or nonzero.
(a) First, let B be a fixed n x n matrix over F' such that det(B) # 0. Consider the function

d: Myyn(F) — F

defined by d(A) = det(AB)/ det(B). (Hint: the answer to the following set of questions should follow
trivially from associativity of matrix multiplication. Make sure to mention why in your solution.)
(i) Let E be the n X n elementary matrix obtained from the identity matrix by swapping two rows.
Show that d(FA) = —d(A).
(ii) Let £ be the n x n elementary matrix obtained from the identity matrix by scaling a row by a
scalar A. Show that d(EA) = Ad(A).
(iii) Let £ be the n x n elementary matrix obtained from the identity matrix by adding a scalar multiple
of one row to another. Show that d(EA) = d(A).
(iv) Show that d(I,,) = 1.
(b) It remains to be shown that det(AB) = det(A) det(B) when det(B) = 0. Fix any n X n matrix B
such that det(B) = 0. Our goal is to show det(AB) = det(A) det(B) = 0. Recall that the kernel
(nullity) of a linear function f: V — W is the subspace of V' defined by

ker(f):={veV: f(v) =0},
and that the image (range) of f is the subspace of W defined by

im(f) :={f(v):veV}.

The rank of f is the dimension of im(f). If A is any matrix representing f (with respect to some choice
of bases for V and W), then we have seen that the rank of A, defined as the dimension of its row or
column space, equals the rank of f.

IMany of the entries in this matrix are 0. You are free to compute fewer than the standard 4! = 24 terms in the permutation
expansion as long as you clearly explain which permutations need not be included.
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(i) Let f: V — W and g: W — U be linear transformations of finite dimensional vector spaces over
F'. Show that

ker(f) C ker(go f) and im(g o f) Cim(g).
(Recall that to show an inclusion of sets A C B, we start with: “Let a € A”, do some math, and
conclude with “Thus, a € B”)
(ii) Use part (a) to prove that rank(g o f) < rank(f) and rank(g o f) < rank(g).
(Hint: For one of them you might need to use the rank-nullity theorem.)
(iii) Let A be an m X n matrix over F, and B an n X p matrix over F. Use what you have already
shown to prove that rank(AB) < rank(A) and rank(AB) < rank(B).
(iv) Using the previous parts of this problem, prove that if A and B are n x n matrices such that either

det(A) = 0 or det(B) = 0, then det(AB) = 0.

Problem 3. Read the attached exposition on Cramer’s rule before attempting this problem.

(a) Consider the 3 x 3 system of equations over the real numbers:

1 2 3 1 4
2 0 2 z2 | =10
01 2 T3 2

Use Cramer’s rule to compute 2. (You may assume the system is consistent.)
(b) Consider the following matrix over the complex numbers:

1+2 0 O
A= 0 1 0
? 0 1—:

Compute each entry of adj(A) by hand, and then use the formula coming from Cramer’s rule to
compute A1,



CRAMER’S RULE

Let A be an invertible n x n matrix, and let b € F". Consider the n x n system of linear equations Ax = b
where z is the column vector with entries (z1,...,2,). Foreach j = 1,...,n, let M; be the n X n matrix

formed by replacing the j-th column of of A by b. Cramer’s rule says that the solution to the system is
given by

det(Mj)
CL‘j = s
det(A)
forj=1,...,n.
Example 1. Consider the system of equation
axr +by=s
cx +dy =t.

In matrix form, we write the system as

a b x\ [ s

c d y ) \t )’
Assume the determinant of < CCL Z ) is nonzero, and apply Cramer’s rule:

det(M;) = det( j Z > = sd — bt,

det(Ms) = det < CCL ‘; ) = at — sc.

By Cramer’s rule, the solution to the system is
_det(M;)  sd—bt
~ det(4)  ad—bc

_ det(Mz) at—sc
~ det(A)  ad—bc’

Let’s check this solution:

(C)G)-C) = G- ()

It is easy to check that
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Hence, the solution is




This agrees with the solution we calculated using Cramer’s rule.

Cramer’s rule and inverses. Suppose that A is an invertible n X n matrix. To find the inverse of A,
we need to find a matrix X such that AX = I,,. Finding the j-th column of X is the same as solving the
system Az = e;, where e; is the j-th standard basis vector. We can then solve for = using Cramer’s rule n
times—once for each column. We now describe the resulting formula for the inverse of A. First, some
notation: for each i,j € {1,...,n} let A7 be the (n — 1) x (n — 1) matrix formed by removing the j-th
row and i-th column of A. Next, define the adjugate of A, denoted adj(A) by

(adj(4))ij = (—1)"* det(A”").

The scalar (—1)*7 det(A7?) is called the ji-th cofactor of A. Note that we are defining the ij-th entry of
the adjugate using the ji-th cofactor—the indices reverse order.
Cramer’s rule applied to the problem of finding the inverse then gives the following important formula:

_ (.
= det(A) VA

Example 2. As a simple example of Cramer’s formula for the inverse, let
a b
A=)
In this case, each A7 isa 1 x 1 matrix. We get

(adj(A))11 = (=1) L det(A) = det([d]) = d

(adj(A))12 = (=1)"2 det(A?!) = — det([b]) = —b

(adj(A (A7) = [c]) = —c
%)

adj

No1 = (=1)* det(A'?) = — det([c])
(adj(A))az = (—=1)*2 det(A??) = det([a]) = a.

Thus, Cramer’s formula gives the formula for the inverse of A we used earlier:

1 1 d —b
A7l = dj(A) = —— .
det(A)a i(4) ad — be < —c a >
Cramer’s rule: continuity of solutions and of the inverse. In general, Cramer’s rule is not a time-

efficient or numerically stable way to compute the solution to a system of equations. However, it is
theoretically useful as we see from the following immediate corollaries of the rule:

adj

Theorem. Let F' be R or C, and let GL,,(F') denote the set of invertible n X n matrices over F'.
(1) The function

GL,(F) — F
Ar—s A1

is a continuous function. In other words, the inverse of A is a continuous function of the entries of A.
(2) The solution x to the system Ax = b is a continuous function of the entries of A and b.

Proof. For part (1), it suffices to show that the entries of A~! are rational functions (i.e., quotients of
polynomials) in the entries of A (with denominators that do not vanish for invertible A). But this follow’s
immediately from Cramer’s rule:

1
Al = adj(A).
det(4) 24
The function A +— det(A) € F is a polynomial in the entries of A (consider the permutation or Laplace
expansion of the determinant), hence continuous. Hence, restricted to invertible matrices, the function A —
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1/ det(A), which gives the denominators of the entries of A~!, is continuous. Similarly, the entries of adj(A)
are polynomials in the entries of A. The result follows.
Part (2) follows since Az = b implies z = A~'h. We’ve just seen that the entries of A~! are quotients of

polynomials in the entries of A, hence the components of x are quotients of polynomials in the entries af A

onb. O
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