MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 7

Problem 1. Suppose that A is an invertible square matrix and P and Q are square matrices such that

$$PAQ = I$$

Prove that

$$A^{-1} = QP.$$

Problem 2. Square matrices are called *similar* when they represent the same linear transformation, each with respect to the same starting and ending bases. In other words, $A \in F^{n \times n}$ is similar to $B \in F^{n \times n}$ if and only if there are ordered bases α and β of F^n and a linear transformation $f: F^n \to F^n$ such that

$$A = A^{\alpha}_{\alpha}(f)$$
 and $B = A^{\beta}_{\beta}(f).$

- (a) Prove that $A, B \in F^{n \times n}$ are similar if and only if there is an invertible matrix $P \in F^{n \times n}$ such that $A = P^{-1}BP$.
- (b) Prove that similarity is an equivalence relation on $F^{n \times n}$.
- (c) Show that if A is similar to B, then A^k is similar to B^k for all natural numbers k.

Problem 3. Suppose that, with respect to $\alpha = \mathcal{E}_2$ and $\beta = ((1, 1), (1, -2))$, the linear transformation $t \colon \mathbb{R}^2 \to \mathbb{R}^2$ is represented by the matrix

$$A_{\alpha}^{\beta}(t) = \begin{pmatrix} 1 & 2\\ 3 & 4 \end{pmatrix}$$

Use change-of-basis matrices to represent t with respect to the following pairs of bases:

(a) $\delta = ((0,1), (1,1)), \gamma = ((-1,0), (2,1)),$ (b) $\varepsilon = ((1,2), (1,0)), \zeta = ((1,2), (2,1)).$

Problem 4. Suppose $f: V \to W$ is a linear transformation. Define $f^*: W^* \to V^*$ by the rule

$$\phi \longmapsto f^*(\phi) = \phi \circ f.$$

(Recall that ϕ is a linear map $W \to F$, so $\phi \circ f$ makes sense as a linear map $V \to F$, *i.e.*, an element of V^* .)

- (a) Prove that f^\ast is a linear transformation.
- (b) Suppose $g: U \to V$ is a linear transformation. Prove that $(f \circ g)^* = g^* \circ f^*$. Also verify that $\operatorname{id}_V^* = \operatorname{id}_{V^*} .^1$
- (c) Suppose that V and W have ordered bases $\langle v_1, \ldots, v_n \rangle$ and $\langle w_1, \ldots, w_m \rangle$, respectively, and suppose that f has matrix $A \in Mat_{m \times n}(F)$ with respect to these ordered bases. Prove that the matrix of f^* relative to $\langle w_1^*, \ldots, w_m^* \rangle$ and $\langle v_1^*, \ldots, v_n^* \rangle$ is the *transpose* of A, *i.e.*, A^{\top} with

$$(A^{+})_{ij} = A_{ji}.$$

(d) Use your work from (b) and (c) to write a **short**, non-computational proof that $(AB)^{\top} = B^{\top}A^{\top}$.

Problem 5. The *trace* of an $n \times n$ matrix A is the sum of its diagonal elements:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

¹This makes ()* a *constravariant functor*, but you needn't know what that means.

- (a) If A and B are $n \times n$ matrices, prove that tr(AB) = tr(BA). (You could use the definition of matrix multiplication and summation notation in your proof, or there is a slick proof that uses duals and your work from the previous problem – how does tr(A) compare to tr(A^T)?)
 (b) If P is an invertible n × n matrix, prove that tr(PAP⁻¹) = tr(A).
 (c) Consider the following ordered basis for M_{2×2}:

$$\alpha = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \quad \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right).$$

A rote check reveals that tr is a linear transformation. Assuming this fact, compute the matrix representing the trace function tr: $F^{2\times 2} \to F$ with respect to α for the domain and with respect to the basis {1} for the codomain.