MATH 201: LINEAR ALGEBRA HOMEWORK DUE FRIDAY WEEK 5

Problem 1. Let *V* and *W* be vector spaces over *F*, and let $f: V \to W$ be a linear transformation.

- (a) Prove that f is injective if and only if f carries linearly independent subsets of V to linearly independent subsets of W.
- (b) Suppose that f is injective and that S is a subset of V. Prove that S is linearly independent if and only if f(S) is linearly independent.

Problem 2. Fix an *F*-vector space *V*. Recall from Problem 5 of the Week 5 homework that $V^* = \text{Hom}(V, F)$ is the *dual* of *V*. We write $V^{**} := (V^*)^*$ for the *double dual* of *V*; its elements are linear transformations from V^* to *F*. The *evaluation* map ev: $V \to V^{**}$ is the function taking $v \in V$ to $(\text{ev}_v : V^* \to F) \in V^{**}$ where $\text{ev}_v(f) = f(v)$.

- (a) Prove that ev is a linear transformation.
- (b) It is a fact that for any nonzero $v \in V$, there exists $f \in V^*$ such that $f(v) \neq 0$. (*Challenge*: Prove it. If V is infinite dimensional, you will need to invoke the axiom of choice.) Use this to prove that ev is injective.
- (c) Use Problem 5 of Week 5 to show that $V \cong V^* \cong V^{**}$ when V is finite dimensional.¹

Problem 3. Let

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & -3 \\ 4 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 4 \\ -1 & -2 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}.$$

(a)

Compute, if possible, the following. If it is not possible, explain why.

(a)
$$AB$$
, (b) $A(2B+C)$, (c) $A+C$,
(d) $(AB)D$, (e) $A(BD)$, (f) AD .

Problem 4. Let A and B be $m \times n$ matrices over F, and C an $n \times p$ matrix over F. Prove that (A+B)C = AC + BC. (This is called the *right distributivity* property.)

Problem 5. Let $\mathbb{R}[x]_{\leq n}$ be the vector space of polynomials in x of degree at most n with coefficients in \mathbb{R} . Define

$$f \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 3}$$
$$p(x) \mapsto \int_0^x p(t) \, dt.$$

Find the matrix representing f with respect to the bases $\{1, x, x^2\}$ for $\mathbb{R}[x]_{\leq 2}$ and $\{1, x, x^2, x^3\}$ for $\mathbb{R}[x]_{\leq 3}$.

Problem 6. Let *V* be a vector space over a field *F*. Recall that the *identity function* is the linear function $id_V : V \to V$ by $id_V(v) = v$ for all $v \in V$.

(a) Let V be a vector space of dimension n and let α be an ordered basis for V. Show that the matrix representing id_V with respect to the basis α for both the domain and the codomain is I_n (the $n \times n$ identity matrix).

¹When V is infinite dimensional, this no longer holds. Also note that $V \cong V^*$ depends on the choice of a basis while the definition of ev does not depend on a basis; it is *canonical*.

- (b) Let V and W be vector spaces of dimension n and let $f: V \to W$ be an isomorphism with inverse $f^{-1}: W \to V$. Let α and β be ordered bases for V and W, respectively. If A is the matrix representing f with respect to the bases α and β , what is the matrix for f^{-1} with respect to the bases β and α ?
- (c) Consider the linear transformation

$$\begin{split} f \colon \mathbb{R}^2 &\to \mathbb{R}^2 \\ (x,y) &\mapsto (3x+y, -x+4y) \end{split}$$

Using part (b), prove that f is an isomorphism by exhibiting its inverse using matrix calculations. Write the inverse in the form g(x, y) = (blah, blah).