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Notation

N – the natural numbers {0, 1, 2, 3, . . . }

Z – the integers {. . . ,−2,−1, 0, 1, 2, . . . }

Q – the set of rational numbers (fractions a/b with a, b ∈ Z and b 6= 0)

R – the real numbers (positive and negative decimals, potentially infinite and nonrepeating)

[n] – the set of numbers {1, 2, . . . , n}

Sn – the set of permutations of [n]





Introduction

This text is a rigorous, problem-centered exploration of the mathemat-
ics of discrete structures focusing on the following subjects:

· Combinatorics tells us why there are 40,320 ways to place eight non-
attacking rooks on an 8×8 chessboard. We will learn how to count
permutations, combinations, derangements, and other collections,
develop the language of sets and functions, and utilize basic proof
techniques like the pigeon hole principle and mathematical induction.
We will touch on graph theory as well.

· Graph theory Fill this in

· Probability tells us why it’s likely that two people in a room of 23 or
more will share the same birthday. We will study conditional probabil-
ity, Bayes’ Theorem, and expected values.

· Number theory tells us why we shouldn’t try to solve the equation
a3 + b3 = c3 with nonzero integers. Topics include divisibility, prime
numbers, the Fundamental Theorem of Arithmetic, modular arithmetic,
and Fermat’s Little Theorem.





Fundamental counting principles

Beginning counting

In his 2010 New York Times opinion piece From Fish to Infinity [Stro-
gatz, 2010], mathematician Steven Strogatz extols a Sesame Street
skit as the finest possible introduction to the concepts of number and
counting. In the skit, the concierge of The Furry Arms Hotel takes a
room service order from a huddle of penguins; after some confusion,
the order settles on “fish, fish, fish, fish, fish, fish.” When the concierge
experiences difficulties communicating this order to the kitchen, Ernie
interrupts to suggest that it might be easier if he counts the fish. Count
them?

Despite the apparent utility of counting, Strogatz argues

[W]e might notice a potential downside to numbers. Sure, they are great
time savers, but at a serious cost in abstraction. Six is more ethereal
than six fish, precisely because it’s more general. It applies to six of
anything: six plates, six penguins, six utterances of the word “fish.” It’s
the ineffable thing they all have in common.

Viewed in this light, numbers start to seem a bit mysterious. They
apparently exist in some sort of Platonic realm, a level above reality.
In that respect they are more like other lofty concepts (e.g., truth and
justice), and less like the ordinary objects of daily life. Upon further re-
flection, their philosophical status becomes even murkier. Where exactly
do numbers come from? Did humanity invent them? Or discover them?

This text will not pursue the philosophical side of Strogatz’s musings.
Instead, we will content ourselves with the enumeration of objects
possessing increasing complexity.

Example 1 (Pacifist rooks). In the game of chess, rooks may move
any distance horizontally or vertically, but not diagonally. Ignoring
colors, we will say that two rooks are attacking each other if they are
in the same rank (i.e., row) or same file (i.e., column). On a standard
8× 8 chessboard, we can easily arrange 8 rooks in a non-attacking
configuration by placing them along the diagonal. In fact, on an n× n

8 rZ0Z0Z0Z
7 ZrZ0Z0Z0
6 0ZrZ0Z0Z
5 Z0ZrZ0Z0
4 0Z0ZrZ0Z
3 Z0Z0ZrZ0
2 0Z0Z0ZrZ
1 Z0Z0Z0Zr

a b c d e f g h

chessboard, we can use the same arrangement to place n pacifist rooks
on the chessboard. This naturally leads to two questions:
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1. Can we fit more than n pacifist rooks on an n× n chessboard?
2. In how many ways can we arrange n pacifist rooks on an n × n

chessboard?1 1 In any combinatorics problem, we
ought to specify what solutions qualify
as distinct. For instance, are rooks
along the diagonal (northwest to
southeast) and rooks along the anti-
diagonal (southwest to northeast)
distinct configurations? In this example,
we will consider symmetric but non-
identical solutions as distinct.

As the reader perhaps expects, it is not possible to put n + 1 or more
pacifist rooks on an n× n chessboard. Indeed, each rook is in some
rank. If there are N > n rooks, then at least two rooks must occupy the
same rank,2 and thus there are at least two attacking rooks.

2 This is an example of argument via
the pigeonhole principle, which we
will discuss at length in a subsequent
section.

At this point, we know that the best we can do is n pacifist rooks on
an n× n board. In how many ways can we arrange these pacifists? Af-
ter some contemplation, we can convince ourselves that the following
pictures exhaust the n = 1, 2, 3, 4 cases.

n configurations of n pacifist rooks on an n× n board

1 1 s
a

2
2 rZ
1 Zr

a b

2 0s
1 s0

a b

3

3 s0Z
2 0s0
1 Z0s

a b c

3 s0Z
2 0Zr
1 ZrZ

a b c

3 ZrZ
2 rZ0
1 Z0s

a b c

3 Z0s
2 rZ0
1 ZrZ

a b c

3 ZrZ
2 0Zr
1 s0Z

a b c

3 Z0s
2 0s0
1 s0Z

a b c

4

4 rZ0Z
3 ZrZ0
2 0ZrZ
1 Z0Zr

a b c d

4 rZ0Z
3 ZrZ0
2 0Z0s
1 Z0s0

a b c d

4 rZ0Z
3 Z0s0
2 0s0Z
1 Z0Zr

a b c d

4 rZ0Z
3 Z0Zr
2 0s0Z
1 Z0s0

a b c d

4 rZ0Z
3 Z0s0
2 0Z0s
1 ZrZ0

a b c d

4 rZ0Z
3 Z0Zr
2 0ZrZ
1 ZrZ0

a b c d

4 0s0Z
3 s0Z0
2 0ZrZ
1 Z0Zr

a b c d

4 0s0Z
3 s0Z0
2 0Z0s
1 Z0s0

a b c d

4 0ZrZ
3 s0Z0
2 0s0Z
1 Z0Zr

a b c d

4 0Z0s
3 s0Z0
2 0s0Z
1 Z0s0

a b c d

4 0ZrZ
3 s0Z0
2 0Z0s
1 ZrZ0

a b c d

4 0Z0s
3 s0Z0
2 0ZrZ
1 ZrZ0

a b c d

4 0s0Z
3 Z0s0
2 rZ0Z
1 Z0Zr

a b c d

4 0s0Z
3 Z0Zr
2 rZ0Z
1 Z0s0

a b c d

4 0ZrZ
3 ZrZ0
2 rZ0Z
1 Z0Zr

a b c d

4 0Z0s
3 ZrZ0
2 rZ0Z
1 Z0s0

a b c d

4 0ZrZ
3 Z0Zr
2 rZ0Z
1 ZrZ0

a b c d

4 0Z0s
3 Z0s0
2 rZ0Z
1 ZrZ0

a b c d

4 0s0Z
3 Z0s0
2 0Z0s
1 s0Z0

a b c d

4 0s0Z
3 Z0Zr
2 0ZrZ
1 s0Z0

a b c d

4 0ZrZ
3 ZrZ0
2 0Z0s
1 s0Z0

a b c d

4 0Z0s
3 ZrZ0
2 0ZrZ
1 s0Z0

a b c d

4 0ZrZ
3 Z0Zr
2 0s0Z
1 s0Z0

a b c d

4 0Z0s
3 Z0s0
2 0s0Z
1 s0Z0

a b c d

Table 1: Legal configurations of n
pacifist rooks on an n× n chessboard for
n = 1, 2, 3, 4.Thus we know that the sequence starts 1, 2, 6, 24. But where does it

go from there? First note that each file must contain exactly one rook.
Now begin with the first file: if no other squares are occupied, we may
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freely place this file’s rook in any of n positions. Now go to the second
file: this file’s rook can go in any of n− 1 positions; it cannot go in the
rank where the previous rook was placed. Similarly, we can place the
next file’s rook in any of n− 2 positions (not the first and not the second
rooks’ ranks). The number of choices decreases by one with each file
until we get to the n-th file where only one choice remains for the final
rook.

Each of the initial n choices begets another n− 1 choices, each of
these begets n− 2 choices, each of these n− 3 choices, etc., until each
of the 2 choices for the penultimate file begets 1 choice for the final
column. Thus there are

n · (n− 1) · (n− 2) · (n− 3) · · · 2 · 1

total configurations.3 This number is called “n factorial” and is de- 3 This is an instance of the multiplicative
counting principle (MCP). If you’re
uneasy regarding why these numbers
are multiplied (as opposed to, say,
added) then pay careful attention to the
MCP later in the text.

noted n!. As a special case, we set 0! = 1 (because the empty configu-
ration of rooks on a 0× 0 chessboard is non-attacking). Since factorials
will be so important in our future explorations, we list the first several
values in the following table.

n 0 1 2 3 4 5 6 7 8

n! 1 1 2 6 24 120 720 5, 040 40, 320

Table 2: The value of the factorial
function n! for n = 0, 1, 2, . . . , 8.

In particular, we see that there are

8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40, 320

ways to place eight pacifist rooks on an 8× 8 chessboard.

Example 2. Suppose that 25 people gather in a large field for a socially
distanced party during the COVID-19 pandemic. In lieu of shaking
hands, each participant awkwardly catches the gaze of each other
participant and attempts to look like they are smiling while wearing a
face mask. If each participant shares exactly one awkward glance with
each other participant, how many total glances are shared?

Each of the 25 partygoers looks at 24 other partygoers, so we might
initially think that there are 25 · 24 total glances. But some care must be
exercised: this method counts Alice looking at Bob and Bob looking at
Alice as two different glances, when in fact they are the same. Indeed,
every glance is counted exactly twice, and thus the total numbers is

25 · 24
2

= 300.

Furthermore, there is nothing special about 25 in this example. If there
are n partygoers, there are a total of

n(n− 1)
2
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glances.
Observe, though, that we could make this count in another fashion:

The first partygoer glances at n − 1 other people. Then the second
partygoer looks at n− 2 (the original n− 1 others but excluding the
first partygoer). The third partygoer looks at n − 3, etc., until the
penultimate partygoer has just the final reveller to glance at. This
method does not overcount anything, and reveals that there are a total
of

(n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1

glances.4 Since we have counted the same thing in two different ways, 4 Here the numbers are added instead of
multiplied. Why? What is different from
the pacifist rooks example? This is an
instance of the additive counting principle
that you will study in detail soon.

we have just uncovered a combinatorial identity:

n(n− 1)
2

= (n− 1) + (n− 2) + (n− 3) + · · ·+ 2 + 1

for n ≥ 2.5 Replacing n with n + 1, we can rewrite this as an identity 5 You could argue that the identity holds
for n = 1 as well, but we will save such
pedantry for later.

regarding the sum of the first n positive integers:

n(n + 1)
2

= 1 + 2 + 3 + · · ·+ (n− 1) + n

for n ≥ 1.
This example hints at the power of combinatorial methods. By

counting something in more than one way, we can uncover striking
relationships between numbers.

Example 3. During its daily scrum meeting, the Committee on Com-
mittees decides it must form a Subcommittee on the Comity of Com-
mittees. If the Committee on Committees has 12 members and the
Comity Subcommittee is to have five members, how many different
such subcommittees may be formed?

Let’s model the creation of the subcommittee by choosing its mem-
bers in sequence. For the first member, we have 12 choices (any of
the Committee on Committees’s members); for the second, any of
the remaining 11 may be chosen; for the third, there are 10 remain-
ing choices; then 9 choices for the fourth; and finally 8 choices for
the fifth member. In this way, get 12 · 11 · 10 · 9 · 8 ways to create the
subcommittee if the order of selection matters. But the order of selection
doesn’t matter! The subcommittee consisting of Alice, Bob, Charlene,
Derrick, and Esther is the same as the subcommittee with members
Charlene, Esther, Bob, Alice, and Derrick. So we have overcounted
by a consistent factor, namely the number of ways to re-order the five
subcommittee members. Thinking back to the logic of Example 1, the
reader should convince themselves that there are 5! = 5 · 4 · 3 · 2 · 1
ways to do this re-ordering. Thus the total number of possible Comity
Subcommittees is

12 · 11 · 10 · 9 · 8
5!

= 792.



13

This is actually a first example of a binomial coefficient, a topic we
will explore in great detail later.

Example 4. Elaborating on the previous example, suppose that we
must also designate a chair of the Comity Subcommittee. In how
many ways can we select the subcommittee-with-chair? Let’s first
answer this by leveraging the work we have already done: first choose
the subcommittee (there are 792 such choices) and then choose the
chair (any one of the five subcommittee members). From this, we see
that there are

792 · 5 = 3, 960

Comity Subcommittees with Chair.
But we could also answer this question in a different way: first

choose the chair (there are 12 such choices — any member of the
Committee on Committees) and then choose the remaining four
subcommittee members from the 11 reamining committee members.
Using the same logic as the previous example, we see that there are

11 · 10 · 9 · 8
4!

= 330

ways to make the second choice. Thus there are

12 · 330 = 3, 960

total Comity Subcommittees with Chair. Gratifyingly, this is the same
number that we found before.

There are three takeaways here:

(i) We can enchain combinatorial reasoning and enumerations to
create more complex counts.

(ii) If you want to verify a count, try to perform the count in a
different way.

(iii) Once again, we see that two different counts of the same object
result in a novel identity. In this case, the logic of this problem
generalizes to prove that(

n
k

)
· k = n ·

(
n− 1
k− 1

)
where (r

s) is the binomial coefficient counting the number of
ways to select s objects from r. (Return to this identity after you
have learned more about binomial coefficients.)
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The language of sets

A SET is a collection of distinct objects, called the elements of the set.
For instance, we may consider a deck of cards D to be a set, where
the elements of D are the cards in the deck. Similarly, a section S of
Math 113 forms a set: the elements are the students in the section. The
cardinality of a set A is the number |A| of elements the set contains.6 6 We read |A| as “the cardinality of A.”

The pipes | | are only related to the
absolute value function in that they both
connote a type of magnitude.

If D is a standard deck of cards, |D| = 52. If S is a section of Math 113
at Reed College, then |S| is probably about 18. When A is infinite, we
write |A| = ∞.7 In simple but general terms, the goal of combinatorics 7 There are actually many different sizes

of infinity, but we won’t explore the
topic here. Sets themselves become
increasingly unwieldy as their size
becomes more and more infinite, and set
theory is a mathematical subject unto
itself, full of nuance and surprises. In
this text, we almost always only work
with finite sets, and the naïve view of
sets offered here is perfectly sufficient
for such objects.

is to determine |S| for interesting finite sets S.
If A is a set and x is an element of A, we write x ∈ A.8 If we

8 The symbol ∈ is a stylized E or epsilon
(ε) standing for element.

know the elements of a set, then we may specify the set by listing the
elements inside of curly braces { }. For instance,

{1, 2, 3, 4, 5, 6, 7}

is the set whose elements are the integers between 1 and 7, inclusive.
Similarly,

{K♣, K♥, K♦, 2♠, 2♣}

is the set corresponding to a particular full house 5-card poker hand,
kings over twos. Note that the elements of a set must be distinct, so
{a, a} = {a}. Sets are also insensitive to order, so {a, b} = {b, a}.

Mathematicians frequently work with sets of numbers, the follow-
ing being the most common examples:

· N = {0, 1, 2, 3, . . .}, the set of natural numbers;

· Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers;

· Q, the set of rational numbers (fractions a/b with a, b ∈ Z and b 6=
0);

· R, the set of real numbers;9 9 The real numbers are supposed to
be the familiar positive and negative
decimals (potentially infinite and nonre-
peating). Take a course in introductory
analysis to explode the myth that this is
a “simple” construction.

· C, the set of complex numbers with elements of the form a + bi
where a and b are real numbers and i satisfies the identity i2 = −1.

Another important example of a set is the empty set ∅. This is the set
containing no elements, i.e., ∅ = {}. Note that |∅| = 0.

If a set can be specified as elements of a particular type satisfying a
particular property, then we can use set builder notation to write them
down. This is best seen by example; for instance,

{x ∈ Z | 1 ≤ x ≤ 7} = {1, 2, 3, 4, 5, 6, 7}.
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The notation before the pipe | tells us that the set consists of integers,
while the portion after the pipe tells us what properties the integers
must satisfy. Read {x ∈ A | P} as “the set of x in A

such that x satisfies property P.”The elements of a set can be other sets, and it will not be uncom-
mon that we will want to count the number of sets in a set of sets.
For instance, we have already seen that it is reasonable to model a
five-card poker hand as a set of cards with cardinality 5. Thus the set

X = {poker hands H | H is a full house, kings over twos}

is reasonably conceptualized as a set of sets, and one element of X is
the set {K♣, K♥, K♦, 2♠, 2♣} that we considered previously. By the
end of this chapter, you will be able to argue with relative ease that
|X| = 24, meaning that there are 24 distinct kings over twos full house
poker hands.

Definition 5. A set A is a subset of a set B, denoted A ⊆ B, if every
element of A is also an element of B.

A

B

Figure 1: We can visualize a set A as all
the elements contained in a “blob,” and
similarly for B. We have A ⊆ B if and
only if the blob for A is subsumed by
B’s blob.

As special cases, we see that B ⊆ B (all the elements of B are contained
in B) and ∅ ⊆ B (all of the [nonexistent!] elements of ∅ are contained
in B).10 We also have the following inclusions amongst common sets

10 The relation ∅ ⊆ B is an example of a
condition being satisfied vacuously.

of numbers:
N ⊆ Z ⊆ Q ⊆ R ⊆ C.

When A ⊆ B and A 6= B, we say that A is a proper subset of B. If we
want to notate the properness of A ⊆ B, we may write A ( B.

It bears mentioning that two sets are equal (or the same) when they
consist of the same elements. This definition results in the following
proposition which is as obvious as it is useful.

Proposition 6. For sets A and B, A = B if and only if A ⊆ B and
B ⊆ A.

Proof technique: To show that sets A
and B are equal, first show that A ⊆ B,
and then show B ⊆ A.

Proof. We have already observed that equal sets are subsets of each
other. For the converse, suppose that A ⊆ B and B ⊆ A. This means
that every element of A is an element of B, and every element of B
is an element of A. This precisely says that A and B have the same
elements.

WE NOW TURN TO SOME COMMON OPERATIONS ON SETS .

Definition 7. Fix sets A and B. We define

· the union of A and B to be the set

A ∪ B = {x | x ∈ A or x ∈ B},

· the intersection of A and B to be the set

A ∩ B = {x | x ∈ A and x ∈ B},
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· the difference of A and B to be the set

A r B = {x | x ∈ A and x /∈ B},

and The notation x /∈ B means that x is not
an element of B.

· the symmetric difference of A and B to be the set

A4B = {x | x is in exactly one of A or B}.

A B

A ∪ B

A B

A ∩ B

A
B

A r B

A B

A4B

Figure 2: Using cartoons similar to
Figure 1, we may visualize the union,
intersection, difference, and symmetric
difference of sets A and B. Here the
entirety of the left disk represents
A, and the entirety of the right disk
represents B.

For instance, if A = {1, 2, 3, 4} and B = {2, 4, 6, 8}, then we have

A ∪ B = {1, 2, 3, 4, 6, 8},
A ∩ B = {2, 4},
A r B = {1, 3},
A4B = {1, 3, 6, 8}.

Note that B r A = {6, 8}, so A r B 6= B r A. It is, though, the case that
A4B = B4A for all sets A and B (thus the “symmetric” in symmetric
difference).

The basic set operations satisfy a number of compatibilities that we
outline in the following propositions. We only prove a small fraction
of these properties; the other proofs are very similar in flavor, and the
diligent reader is encouraged to write out their details.

Proposition 8 (Distribution of intersection over union and union over
intersection). For all sets A, B, C, Compare these rules with the familiar

distribution of multiplication over
addition: a(b + c) = ab + ac. Of course,
a + (bc) 6= (a + b)(a + c), so the
“arithmetic” of sets under intersection
and union is not identical to numbers
under multiplication and addition.

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

and
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
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We will only prove the first of these equalities. Take the below
proof is a template for how you should prove equality of sets (and
make sure you understand why it works!).

Proof of the first distributive law. We prove that A ∩ (B ∪ C) = (A ∩ B) ∪
(A ∩ C) by checking that the left-hand side is a subset of the right-hand
side, and vice versa. Suppose that x is a fixed but arbitrary element of
A ∩ (B ∪ C). By definition, x is in A and x is in B ∪ C. In order for x to
be an element of B ∪ C, it must be the case that x is in B or x is in C. In It is a general principle that or-

statements and unions allow us to
break our argument into cases.

case x ∈ B, we have that x ∈ A and x ∈ B, so x ∈ A ∩ B. In case x ∈ C,
we have x ∈ A and x ∈ C, so x ∈ A ∩ C. Either way (or both ways),
we have x ∈ (A ∩ B) ∪ (A ∩ C). Since x was an arbitrary element of
A ∩ (B ∪ C), we learn that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

We now prove the other inclusion. Suppose that x is a fixed but
arbitrary element of (A ∩ B) ∪ (A ∩ C). Then x is in A ∩ B or x is
in A ∩ C. In the first case, x ∈ A and x ∈ B. Since B ⊆ B ∪ C, we
have x ∈ A and x ∈ B ∪ C, i.e., x ∈ A ∩ (B ∪ C). On the other hand,
if x ∈ A ∩ C, we know x ∈ A and x ∈ C. Since C ⊆ B ∪ C, we
have x ∈ A and x ∈ B ∪ C, i.e., x ∈ A ∩ (B ∪ C). Since initially
x was an arbitrary member of (A ∩ B) ∪ (A ∩ C), we have proven
that (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). Since we have proven both
inclusions of sets, we conclude that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
as desired.

Proposition 9 is also known as De
Morgan’s law, named for the British
mathematician Augustus De Morgan
(1806–71).

Proposition 9 (Interchange of union and intersection under set differ-
ence). For all sets A, B, C,

C r (A ∪ B) = (C r A) ∩ (C r B)

and
C r (A ∩ B) = (C r A) ∪ (C r B).

The reader is encouraged to draw cartoons representing Proposi-
tion 9 and think through (but not necessarily write out) the formal
proof of this statement.

Our final operation on sets is of a different flavor.

Definition 10. Given sets A and B, the Cartesian product of A and B is

A× B = {(a, b) | a ∈ A, b ∈ B},

the set of ordered pairs (a, b) where a ∈ A and b ∈ B.

It is common to make a picture of A× B by putting the elements
of A along a “horizontal axis” and the elements of B along a “vertical
axis.” Then the ordered pairs (a, b) correspond to points in the “AB-
plane” with first coordinate a and second coordinate b. When A =

B = R, this recovers the standard Euclidean plane R×R = R2.



18

Example 11. A deck of cards with suits ♠,♣,♥,♦ and denominations
A, 2, 3, . . . , 10, J, Q, K can be encoded in the Cartesian product

{♠,♣,♥,♦}× {A, 2, 3, . . . , 10, J, Q, K}.

♠ ♣ ♥ ♦

A

2

3

4

5

6

7

8

9

10

J

Q

K

(♠, A)

(♠, 2)

(♠, 3)

(♠, 4)

(♠, 5)

(♠, 6)

(♠, 7)

(♠, 8)

(♠, 9)

(♠, 10)

(♠, J)

(♠, Q)

(♠, K)

(♣, A)

(♣, 2)

(♣, 3)

(♣, 4)

(♣, 5)

(♣, 6)

(♣, 7)

(♣, 8)

(♣, 9)

(♣, 10)

(♣, J)

(♣, Q)

(♣, K)

(♥, A)

(♥, 2)

(♥, 3)

(♥, 4)

(♥, 5)

(♥, 6)

(♥, 7)

(♥, 8)

(♥, 9)

(♥, 10)

(♥, J)

(♥, Q)

(♥, K)

(♦, A)

(♦, 2)

(♦, 3)

(♦, 4)

(♦, 5)

(♦, 6)

(♦, 7)

(♦, 8)

(♦, 9)

(♦, 10)

(♦, J)

(♦, Q)

(♦, K)

Figure 3: A standard deck of playing
cards, reimagined as a Cartestian
product.

We already know that there are 52 = 4 · 13 cards, and the following
proposition shows that this type of count is generic.

Proposition 12. If A and B are finite sets, then

|A× B| = |A| · |B|.

Proof. There are |A| choices for how to fill in the first coordinate of
an element of A× B, and |B| choices for the second. The count then
follows from the Multiplicative Counting Principle, about which you
will learn in the next section.

We conclude by illustrating how Cartesian product interacts with
the other set operations.

Proposition 13. If A, B, C, D are sets, then

(i) A× (B ∩ C) = (A× B) ∩ (A× C),
(ii) A× (B ∪ C) = (A× B) ∪ (A× C),

(iii) A× (B r C) = (A× B)r (A× C), and
(iv) (A ∩ B)× (C ∩ D) = (A× C) ∩ (B× D).

The overly optimistic student might
hope that, in analogy with (iv), (A ∪
B) × (C ∪ D) = (A × C) ∪ (B × D),
but this is not true in general! Find a
counterexample.

We prove the first statement and leave the others to the reader.

Proof of Proposition 13(i). We prove this identity by showing both set
inclusions. First suppose that (a, x) is a fixed but arbitrary element
of A × (B ∩ C). Then a ∈ A and x ∈ B ∩ C. Thus (a, x) ∈ A × B
(since B ∩ C ⊆ B) and (a, x) ∈ A × C (since B ∩ C ⊆ C). Thus
A× (B ∩ C) ⊆ (A× B) ∩ (A× C).

Now suppose that (a, x) is a fixed but arbitrary element of (A× B) ∩
(A× C). Since (a, x) ∈ A× B, we know that a ∈ A and x ∈ B. We also
know that (a, x) ∈ A× C, so it is also the case that x ∈ C. Thus a ∈ A
and x ∈ B ∩ C, meaning that (a, x) ∈ A× (B ∩ C). This shows that
(A× B) ∩ (A× C) ⊆ A× (B ∩ C). Since both inclusions hold, the sets
are in fact equal.
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Additive and multiplicative counting principles

ONE OF OUR CENTRAL GOALS is to develop methods for counting
the number of elements in a finite set, i.e., a finite collection of objects.
The sets of interest are often defined via a (finite) list of properties.
Here we consider two general scenarios: requiring that the elements
of the set satisfy at least one of the properties or requiring that they
satisfy all of the properties. The first scenario is characterized by the
word “or” and leads to the additive counting principle, and the second is
characterized by the word “and”, leading to the multiplicative counting
principle.

A PARTITION OF A FINITE SET S is a way to divvy S up into pieces
that do not overlap; more precisely, we write Example of a partition:

{1, 2, 3, 4, 5, 6, 7} = {3, 6} q {1, 4} q {2, 5, 7} .

S S1 S2 S3
S = S1 q S2 q · · · q Sm

and call {S1, . . . , Sm} a partition of S if S1, S2, . . . , Sm are subsets of S
such that every object in S is in exactly one of the Si.

Question 14. Let S = {a, b, c, d, e}. Why are neither of the following
partitions of S:

(i) S1 = {a, b, c} , S2 = {c, d, e} ? (ii) S1 = {a, b, c} , S2 = {e} ?

The additive counting principle says that given a partition of a finite
set, the number of elements in the set is the sum of the sizes of the sets
in the partition:

We hope the reader finds Theorem 15
sufficiently obvious. A formal proof
would require diving into the founda-
tions of mathematics (defining what we
mean by cardinality, addition, etc.).

Theorem 15 (Additive Counting Principle [ACP]). If {S1, S2, . . . , Sm} is
a partition of a finite set S, then

|S| = |S1|+ |S2|+ · · ·+ |Sm|.

There will be many situations in which our counting problems will
break into disjoint pieces or cases, and this is when we will employ
the ACP. As a trivial instance, suppose you were asked to choose a
ball from a bag, and that eight of the balls were solid-colored and
seven were striped. Then by the ACP, you would know that you
have 8 + 7 = 15 choices.

Question 16. In the set of ten numbers A := {1, 2, . . . , 10}, there are
five that are divisible by 2 and three are divisible by 3. Applying the
ACP, it looks like there should be 5 + 3 = 8 ways to choose a number
in A that is either divisible by 2 or 3. Explain what is wrong with this
reasoning. Precisely, why does the ACP not apply?
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THE MULTIPLICATIVE COUNTING PRINCIPLE imposes a uniformity
condition on the partition and deduces a simpler formula.

teams

e1

`1 (e1, `1)

`2 (e1, `2)

`n (e1, `n)

...
...

e2

`1 (e2, `1)

`2 (e2, `2)

`n (e2, `n)

...
...

em

`1 (em, `1)

`2 (em, `2)

`n (em, `n)

...
...

Theorem 17 (Multiplicative Counting Principle [MCP] – Version 1). If
{S1, S2, . . . , Sm} is a partition of S and each Si has the same cardinality n,
then

|S| = mn.

Proof. By hypothesis, |S1| = |S2| = · · · = |Sm| = n, and by the ACP,

|S| = |S1|+ |S2|+ · · ·+ |Sm|.

Substituting, we get

|S| = n + n + · · ·+ n︸ ︷︷ ︸
m times

= mn,

as desired.

We will frequently employ a variant of the MCP in which we count
choices. Suppose that we are making two-person teams, where the
first team member has an early birthday (between January and June),
and the second team member has a late birthday (between July and
December). Let S be the set of all two-person teams, and say there
are m early birthday individuals: e1, e2, . . . , em. For each ei, let Si be
the set of teams in which ei is a member. How large is Si? If the late

The n teams in Si :

(ei , `1), (ei , `2), . . . , (ei , `n).

birthday individuals are `1, `2, . . . , `n, then ei can be paired with any
of these n individuals. Thus, |Si| = n for all i, and {S1, . . . , Sm} is a
partition of S. We conclude by the MCP that there are mn such teams.

But we can rephrase this count in the following way: we had m
choices for how to pick the first team member, and for each of these
choices, we had n choices for how to pick the second. Thus, there
are mn many teams. This is our second version of the MCP.

Theorem 18 (Multiplicative Counting Principle – Version 2). If we
can enumerate the elements of S (i.e., count them without repetition) by
first making m choices and then making n choices, then |S| = mn. More
generally, if we can enumerate S by making m1 choices, then making m2

choices, etc., until finally making mk choices, then

|S| = m1m2 · · ·mk.

The proof is by iterative application of the two-choice case, which
we have already justified. We will provide a formal justification after
we have studied mathematical induction, but you are free to use
Theorem 18 now.

The following is a basic counting problem which will be relevant
many times in this text:
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QUESTION : How many subsets are there of a set with n elements?

Definition 19. The power set of a set X, denoted 2X is the set of all
subsets of X.

A note on notation: As mathematicians,
we have the right to define notation
as we see fit. In the case of 2X for the
power set of a set X, there is no sense
in which we are literally raising the
number 2 to the “X-th power.” We only
use this notation as a sort mnemonic
that associates the power set of X with
its cardinality.

For instance, if X = {1, 2, 3}, then 2X has eight elements:

2X = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} .

Proposition 20. Let X be a finite set with n elements. Then the number
of subsets of X is 2n. In other words, |2X | = 2|X|. Return to this count after you have

learned about functions and the set
of functions BA with domain A and
codomain B.

Proof. To create a subset of X, go through the elements of X one at
a time. For each element, make one of two choices: will it be in the
subset or not. The result now follows from the MCP.

When you apply the MCP to your own counting problems, always
make sure the (somewhat hidden) hypotheses are satisfied:

(i) Your choices are independent of each other: no matter what
choices are made up to a certain point, you have the same num-
ber of choices remaining.

(ii) Each sequence of choices yields an element of S.
(iii) Every element of S results from a sequence of choices.
(iv) Distinct sequences of choices yield distinct elements of S—you

are not overcounting.

Example 21. How many numbers are there between 1 and 1000,
inclusive, that contain the digit 1?

SOLUTION (SLIGHTLY BROKEN): We first count the number that do not
contain the digit 1 and then subtract that from 1000. Let B (for bad),
be the collection of these numbers not containing 1. Each element
of B has the form abc where each of a, b, and c are chosen from the
set N = {0, 2, 3, 4, 5, 6, 7, 8, 9} where we take, for example, 007 to
represent the number 7. (Note that 1000 is certainly not in B. So we
do not need to worry about it.) Applying the MCP, we see that there
are 9 choices for a, and for each of these choices, there are 9 choices
for b. Finally, having chosen a and b, there are 9 choices for c. The
MCP gives a count |B| = 9 · 9 · 9 = 729. That leaves 1000− 729 = 271
numbers between 1 and 1000 that do contain the digit 1. Our solution
is 271. �

Question 22. In fact, the answer to Example 21 is 272.

(i) Which of the hypotheses for the MCP, flagged above, is/are not
satisfied?

(ii) How would you rewrite the solution to give the correct answer?
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In your homework, you will prove that for finite sets A, B,

|A ∪ B| = |A|+ |B| − |A ∩ B|.

This generalizes the ACP and will be generalized by the Principle of
Inclusion/Exclusion, which we will study later.

IN MANY CASES , A NATURAL COUNTING SCHEME WILL OVER-
COUNT by a consistent factor. In that case, we use the following:

Proposition 23 (Overcounting Principle [OCP]). If a method of count-
ing a finite set S results in a total count of N but counts each element
of S a total of n times, then

|S| = N
n

.

We will revisit and formally justify this intuitive principle after we
study equivalence relations.

Example 24. Four people are beginning dinner, and one proposes a
toast. How many pairs of glasses must be clinked?

SOLUTION: Denote the people by the set P = {A, B, C, D}. Our
problem is to count the number of pairs from the set P. There are 4
choices for the first person in the pair, and for each of these choices,
there remain 3 choices for the second person. An application of the
MCP says there are a total of 4 · 3 = 12 pairs. However, we are counting
each pair twice. For instance, our choice for the first person could
be A, and our choice for the second could be B, yielding the pair A, B.
On the other hand, our first and second choices could be B, then A,
yielding the pair B, A. In the context of our problem, these pairs
should be considered the same. The overcounting principle gives the
solution: 12/2 = 6.

The astute reader will note that this is
the same argument we gave in Exam-
ple 2, now phrased in the language of
the OCP.

pair

A

B

C

D

B AB

C AC

D AD

A BA

C BC

D BD

A CA

B CB

D CD

A DA

B DB

C DC

Question 25. In how many distinct ways can the letters in the word
MISSISSIPPI be arranged? [Hint: first consider the easier problem
of counting arrangements of M I1 S1 S2 I2 S3 S4 I3 P1 P2 I4, in which the
letters are all distinct.]
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Functions

FUNCTIONS are a way of relating one set to another set. In primary
and secondary education, it is common to think of a function as a
formula like f (x) = 3x2 − 5x + 1. Such a formula has several nice fea-
tures: it accepts values x (probably real numbers?) and produces new
values f (x) computed in a mechanistic way from x. In this way, input
values are related to output values. Our perspective on functions will
retain this feature — inputs get assigned to outputs — but will also be
significantly more expansive, and we encourage the reader to set aside
preconceptions about functions before proceeding.11 11 European mathematicians developed

a significant amount of analysis in the
nineteenth century before settling on
the now-accepted definition of function.
Need a function have an analytical
formula? Are functions necessarily
continuous? Hermann Hankel lamented
the state of disagreement in 1870:

One person defines functions
essentially in Euler’s sense,
the other requires that y must
change with x according
to a law, without giving an
explanation of this obscure
concept, the third defines
it in Dirichlet’s manner, the
fourth does not define it at all.
However, everybody deduces
from his concept conclusions
that are not contained in it.

We will give two equivalent definitions of functions. The first is
slightly less formal than the second, but better captures how mathe-
maticians think about functions.

Definition 26 (Functions — Version 1). A function f : A → B consists
of a domain set A, a codomain set B, and an assignment f : a 7→ f (a)
taking each a ∈ A to precisely one element f (a) of B.

We can visualize this definition quite easily when A and B are
finite sets. Draw the elements of A as dots inside of a container and
similarly draw the elements of B as dots inside of a separate container.
The function f : A → B is a way of assigning each dot in the A
container to a dot in the B container. We denote each assignment via
the arrow-with-a-turnstyle 7→, indicating that when f : a 7→ b (or just
a 7→ b if f is clear from context), we have b = f (a). Here is one such
visualization:

A B
f

a

b

c

d
e

1

2

3

4

Figure 4: A function f : A → B visu-
alized by assigning elements of the
domain to the codomain with “arrows-
with-turnstyles”of the form 7→. Here
A = {a, b, c, d, e} and B = {1, 2, 3, 4}.

Importantly, each element of the domain A gets assigned (or
“mapped”) to one (and only one) element of the codomain B, but
multiple elements of A can be mapped to the same element of B. This
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is apparent in Figure 4. What is not allowed is for an element of the
domain to lack an assignment or to “split itself” and be assigned to
multiple values in the codomain.

Notice that we can also record the information contained in a func-
tion with a table or a graph.12 To make a table, we list the elements 12 In the following discussion, it is

easiest to assume that the domain
and codomain are finite. Are there
classes of infinite sets for which these
representations of functions still make
sense?

of A in a column (or row) and record each value f (a) next to a in a
second column (or row). To make a graph, we list the elements of A
on the horizontal axis and we list the elements of B on the vertical axis;
then over each a ∈ A, we place a dot at height f (a). The following
picture illustrates the table and graph for the function from Figure 4.

x ∈ A f (x) ∈ B

a 1
b 1
c 3
d 4
e 3

a b c d e

1

2

3

4
Figure 5: Representations of the function
f : A → B from Figure 4 as a table and
as a graph.

Graphs are more than handy visualizations of functions. They
are in fact the basis for our second (more formal but less intuitive)
definition:

Definition 27 (Functions — version 2). A function f : A → B with
domain set A and codomain set B is a subset G f ⊆ A× B (called the graph
of f ) such that for every a ∈ A, exactly one ordered pair (a, b) with a as
its first coordinate is an element of G f .

Note that for A, B finite sets, one way to represent the Cartesian
product A× B is as a grid of points with horizontal axis corresponding
to A and vertical axis corresponding to B. The graph that we drew in
Figure 5 consists of the ordered pairs belonging to G f ! Similarly, if we
start with a graph G f ⊆ A× B, then we have the assignment f : A→ B
given by f (a) = b where b is the unique element of B such that (a, b) is
in G f . In this way, we see that Definition 26 and Definition 27 define
the same concept.

Example 28. Consider the set G = {(1, 3), (2, 3), (3, 4)} ⊆ [3] × [4].
This is (the graph of) a function f : [3] → [4] for which f (1) = 3,
f (2) = 3, and f (3) = 4.

Notation: For n ∈ N, we write [n] for
the set {1, 2, . . . , n}. Note that |[n]| = n
and [0] = ∅.

Example 29. In your previous mathematical life, you may have
considered a function on the real numbers given by a formula such
as f (x) = sin(x3). This is still a perfectly reasonable function because
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each x ∈ R is assigned to one f (x) ∈ R (namely, sin(x3)). Thus f
is a function with domain R and codomain R.13 The graph of this 13 We have some choice in setting the

codomain of f . In this case, it could be
as small as the closed interval [−1, 1]
and could also be any set containing
[−1, 1]. See the subsequent discussion of
the image of a function for more details.
We could also restrict the domain to a
subset of R (only allowing particular
input values), or enlarge the domain to
the complex numbers C (assuming we
know about complex trig functions —
in this case the codomain would have
to be altered as well). The moral is that
a function is not truly specified until
we set its domain and codomain; these
choices are constrained, but also allow
some freedom.

function is G f = {(x, sin(x3)) | x ∈ R}. Figure 6 depicts the points in
this graph, plotted in the Cartesian plane R×R, for −3 ≤ x ≤ 3.

x

y

Figure 6: The graph of x 7→ sin(x3)
plotted for −3 ≤ x ≤ 3. The points in
the graph are exactly those of the form
(x, sin(x3)), where x ranges through the
domain.

Example 30. Not all functions have reasonable formulæ. For instance,
there is a function g : R → R which takes x to x if the first nonzero
digit of x is 1 and otherwise takes x to 0. Weird, but still a function.14

14 Worse yet, “most” functions between
infinite sets are not describable by any
written rule whatsoever, but we will not
pursue this perversity further.

Example 31. Here’s an interesting way to use a function: Given a set
X and subset A ⊆ X, let’s build a function which specifies the points
of A. We define the characteristic function of A to be χA : X → {0, 1}
given by

χA(x) =

1 if x ∈ A,

0 if x /∈ A.

A couple of comments: first, χ is the Greek letter “chi” and it stands
for characteristic. Second, the formula above is an example of a piece-
wise definition: we partition the domain into disjoint subsets whose
union is all of X (in this case, A and X r A), and then give a formula or
rule describing what the function does to elements in each subset.

Note that we can reconstruct A from χA as all x ∈ X such that
χA(x) = 1, i.e.,

A = {x ∈ X | χA(x) = 1}.

COMPOSITION is an operation that makes a new function out of two
old ones.

Definition 32. Suppose f : A→ B and g : B→ C are functions and the
codomain of f equals the domain of g. Then we define the composite
of g with f to be the function g ◦ f : A → C given by the equation
(g ◦ f )(a) = g( f (a)).

The composite g ◦ f “does f first” and then “does g.” This is hard to
visualize with graphs, but easy to see with assignments, as in Figure 7
on the next page.

If we already know the nature of f and g, we can summarize
Figure 7 with a picture called a commutative diagram like the black one
to the right. Here the arrows go from domain to codomain and are
labelled by the corresponding function. The blue diagram represents
how this diagram works: if we start with a ∈ A, then the arrow
labelled f takes a to f (a). Continuing this path, the arrow labelled
g takes f (a) to g( f (a)). Meanwhile, the arrow labelled g ◦ f takes a
to g( f (a)) by definition. Since both paths do the same thing to every
a ∈ A, we say that it “commutes.”

B

A C

g

g◦ f

f

f (a)

a g( f (a))



26

A

B

C

f g

g ◦ f

a

b c

1 2
3

4 5

♠ ♣

♥ ♦

Figure 7: The function f (in blue)
assigns members of A to members of
B, and g (in red) assigns members of B
to C. By doing these in order, we get
the composite function g ◦ f : A → C
(in black) assigning members of A to
members of C. For instance, f (a) = 3
and g(3) = ♠, so (g ◦ f )(a) = g( f (a)) =
g(3) = ♠.

The exact shape of a commutative diagram doesn’t matter. If
someone told us that the diagram to the right commutes, we would
know that K(J(x)) = L(x) for each x ∈ X; in other words, L = K ◦ J.

Y Z

X

K

J
L

We can compose more than two functions as well, as long as do-
mains and codomains match up properly. For instance, h ◦ g ◦ f : A→
D makes sense as long as f : A → B, g : B → C, and h : C → D for
some sets A, B, C, and D; we have (h ◦ g ◦ f )(a) = h(g( f (a))). We
leave it as an exercise to the reader to check that h ◦ g ◦ f = h ◦ (g ◦ f ) =
(h ◦ g) ◦ f . This property has a name: composition is associative.

B C

A D

g

h

h◦(g◦ f )=(h◦g)◦ f

f

Figure 8: Associativity of composition
allows us to interpret commutativity of
diagrams with four and more sides.

Every set A supports a function idA : A → A, called the identity
function on A, which interacts in a special way with composition.
This function simply takes a to a for each a ∈ A, i.e., idA : a 7→ a or
idA(a) = a. If f : A → B is a function, let’s consider the composite
f ◦ idA. Well, ( f ◦ idA)(a) = f (idA(a)) = f (a) for every a ∈ A, so
f ◦ idA = f . Similarly, idB ◦ f = f . (Note that we had to change idA

to idB so that domains and codomains would match up!) We see then
that composition with the identity function does nothing to the other
function. This distinguishes identity functions amongst all functions
with the same domain and codomain.

A A

B B

idA

f
f

f

idB

Figure 9: Both triangles in this diagram
commute, expressing that f ◦ idA = f =
idB ◦ f .INJECTIONS , SURJECTIONS , AND BIJECTIONS are functions with

special properties that will aid us in our counting efforts. We start
with injections which, loosely speaking, are functions which do not
take the same value twice.

Definition 33. A function f : A → B is injective (or is an injection) if
f (x) = f (y) (for x, y ∈ A) if and only if x = y.

Meditate on this definition for a while if it seems funny. The point
is that f does not duplicate values in the codomain, so an equality
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between values ( f (x) = f (y)) is only possible when x = y.
Let’s briefly return to our graph interpretation of functions. An

injection hits each value in the codomain at most once. This is also
referred to as the horizontal line test: when we draw a horizontal line
through any b ∈ B, we hit at most one point of the form (a, b) in the
graph.

a b c

1

2

3

Figure 10: This function {a, b, c} →
{1, 2, 3} fails the horizontal line test at 3.
Since a 7→ 3 and c 7→ 3, the function is
not injective.

You may have learned in middle school that functions passing the
horizontal line test have inverses. This fact remains true in the current
context, although we must be careful with the domain of our inverse
function, requiring the following definition.

Definition 34. The image of a function f : A→ B is the set

im( f ) = {b ∈ B | there exists a ∈ A such that f (a) = b}.

In other words, the image of f consists of all the elements of B
that are “hit” by the function. For instance, the image of the function
f : {1, 2, 3} → {1, 2, 3, 4} from Example 28 is {3, 4}. The image of the
function from Example 30 is

{x ∈ R | the first nonzero digit of x is 1} ∪ {0}.

When a function f : A → B is injective, it has an inverse function
f−1 : im( f ) → A; this is the unique function satisfying the equalities
f ( f−1(b)) = b for each b ∈ im( f ) and f−1( f (a)) = a for each a ∈ A. It
is tempting then to write that f ◦ f−1 = idim( f ) and f−1 ◦ f = idA, but
we should recognize that there is a slight mismatch between domains
and codomains. If we replace f : A→ B with f̃ : A→ im( f ) taking the
same values ( f̃ (a) = f (a) for all a ∈ A), then its completely legitimate
to write f̃ ◦ f−1 = idim( f ) and f−1 ◦ f̃ = idA.

We now turn our attention to surjective functions:

Definition 35. A function f : A → B is surjective (or is a surjection) if
im( f ) = B.

In other words, surjections hit everything in their codomain. Of
course, when we define a function, we have some choice regarding
the codomain. For instance, we could consider the assignment on real
numbers x 7→ x2 to have codomain R or codomain [0, ∞) = {x ∈ R |
x ≥ 0}. In the first instance, the function is not surjective, but in the
latter case it is (because every nonnegative real number has a square
root [in fact, two square roots]).

Example 36. Suppose A ( X is a nonempty proper subset of X. Then
the indicator function χA : X → {0, 1} is surjective. (Why? What if
A = ∅ or X?)

Finally, we come to bijections, the most important type of function
in combinatorics:
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Definition 37. A function is bijective (or is a bijection) if it is both
injective and surjective.

Suppose f : A → B is bijective. Then it is injective with im( f ) = B,
so it has an inverse function of the form f−1 : B → A satisfying
f ◦ f−1 = idB and f−1 ◦ f = idA. (We don’t need to replace f with f̃
because im( f ) is all of B.) In fact, a function has such an inverse if and
only if it is bijective.

Theorem 38. A function f : A → B is bijective if and only if there exists a
function g : B→ A (called a [two-sided] inverse of f ) such that f ◦ g = idB

and g ◦ f = idA.

A B

f

g

Figure 11: The function f : A → B is
a bijection, and this is witnessed by
g : B → A (in blue). Starting at any dot
in A, applying f , and then applying g
takes you back to where you started;
this means that g ◦ f = idA. Similarly,
starting at any dot in B, applying g, and
then applying f takes you back to where
you started, so f ◦ g = idB.

Proof. We have already seen that if f is bijective, then such a g exists.
Suppose now that f : A → B is a function and there exists g : B → A
such that f ◦ g = idB and g ◦ f = idA. We need to show that f is
bijective, and will first show that it is injective. Suppose that there are
x, y ∈ A such that f (x) = f (y). Applying g to this equality, we get
g( f (x)) = g( f (y)), and since g ◦ f = idA, this becomes x = y. Hence f
is injective.

We now show that f is surjective. Given b ∈ B, let a = g(b).
Then f (a) = f (g(b)) = b, so f is surjective. Since f is injective and
surjective, it is in fact a bijection, as desired.

Bijections are incredibly useful. Every combinatorial problem
can be reframed as trying to determine the cardinality of a set. The Bijective counting principle: to count a

set, put it in bijection with a set whose
cardinality is known.

following theorem tells us that bijections preserve cardinality, so a
good way to “count” is to produce a bijection between the set we
would like to count, and a set with a known number of elements.

Theorem 39. There exists a bijection f : A→ B between finite sets A and B
if and only if |A| = |B|.

The following statements about finite
sets A and B are also true and can be
verified by the reader:

· If f : A → B is an injection, then
|A| ≤ |B|.

· If g : A → B is a surjection, then
|A| ≥ |B|.

Beware that the converse statements are
false! E.g., knowing that |A| ≤ |B| does
not imply that every function A → B is
injective.

Proof. Suppose that |A| = n = |B|. By counting the n elements of A
and B, we produce bijections a : {1, 2, . . . , n} → A and b : {1, 2, . . . , n} →
B. You should check that f = b ◦ a−1 is a bijection A→ B.

Now suppose that A is finite of cardinality n and there exists
a bijection f : A → B. Counting A again produces a bijection
a : {1, 2, . . . , n} → A. Convince yourself that f ◦ a : {1, 2, . . . , n} → B
counts B, so |B| = n as well.

Let’s now consider the problem of enumerating the functions with
a specified domain and codomain. Fix finite sets A and B, and let
F = { f | f : A → B} be the set of functions with domain A and
codomain B. We would like to determine |F| in terms of |A| and |B|.
This can be achieved via the MCP: to specify f : A → B, for each
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a ∈ A, choose exactly one value f (a) ∈ B. For each of the |A| choices
of a, we have exactly |B|-many independent choice of f (a). Thus

|F| = |B||B| · · · |B|︸ ︷︷ ︸
|A| times

= |B||A|.

This leads to the following notation and a theorem statement that we
have already proven.

Definition 40. For sets A and B, the set of functions with domain A
and codomain B is denoted BA, i.e.,

BA = { f | f : A→ B}.

Theorem 41. For finite sets A and B,∣∣∣BA
∣∣∣ = |B||A|.

In other words, if |A| = n and |B| = m, then there are exactly mn functions
with domain A and codomain B.

In terms of notation and cardinality, this bears more than a passing
resemblance to our discussion of power sets in Proposition 20. Recall
that the set of subsets of X is denoted 2X and has cardinality 2|X|. We
now know another set (defined in terms of X) with cardinality 2|X|,
namely BX for B any set with cardinality 2. A natural bijection links
these two sets, as expressed in the following proposition. Recall from
Example 31 that for A ⊆ X, the characteristic function χA : X → {0, 1}
takes the value 1 on elements of A and the value 0 otherwise.

Proposition 42. Let B be the two-element set {0, 1}. Then the function

f : 2X −→ BX

A 7−→ χA

is a bijection.

Proof. By Theorem 38, it suffices to show that f has a two-sided
inverse g : BX → 2X. Given a function h : X → B (i.e., an element
of BX), we define g(h) = {x ∈ X | h(x) = 1}. Note that g(h) is a
well-defined subset of X, so g really is a function with the indicated
domain and codomain.

In this proof, we are working with
functions between a set of sets and a
set of functions. It is normal for the
self-referentiality of this situation to feel
disorienting at first! Like an ouroboros,
mathematics gains strength from
devouring itself.

We now consider the composites g ◦ f and f ◦ g in turn. For A ∈ 2X ,
we have (g ◦ f )(A) = g(χA) = A, where the first equality follows from
the definition of composition, and the last equality follows since the
only x ∈ X for which χA(x) = 1 are exactly the x in A. We conclude
that g ◦ f = id2X .

For h ∈ BX, we have ( f ◦ g)(h) = χg(h). This is the function
X → B that take the value 1 on the set g(h) ⊆ X and the value 0
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otherwise. Similarly, the function h take the value 1 on the set g(h)
and the value 0 otherwise. As such, χg(h) = h, and we conclude that
f ◦ g = idBX . Since g is a two-sided inverse to f , we know that f is
indeed a bijection.

In light of Theorem 41 and the bijective counting principle, the fact
that f is a bijection provides another proof that

∣∣2X
∣∣ = 2|X|.

We conclude this section by considering one final type of object
that is counted by a set of functions: strings. A string (or sometimes
word) is a list of symbols drawn from a particular alphabet. We will
allow the “alphabet” to be any finite set B and consider the problem of
enumerating strings from B of a particular length.

QUESTION : If |B| = m, how many strings of length n with entries in B
exist?

For instance, if B = {a, b, c} and n = 2, direct inspection reveals that
we may form the following 9 length 2 words with entries in B:

aa, ab, ac,
ba, bb, bc,
ca, cb, cc.

It is no coincidence that 9 = 32 = mn. Each length n string with entries
in B, is the same as a function [n] → B. (Of course, by “the same” we
mean that there is a natural bijection between the set of such strings
and the set of such functions.) Thus Theorem 41 tells us that there are
exactly mn such strings.
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Permutations and combinations

HOW MANY WAYS ARE THERE TO CHOOSE k ELEMENTS FROM

AN n-ELEMENT SET? Before answering this question, we need to be
clear about what it is asking. First, a set has no repeated elements. So,
for example, asking how many ways there are of choosing 4 marbles
from a bag containing 5 blue marbles and 7 green marbles is not an
instance of the question. This bag of marbles is more appropriately
modeled by a “multiset”.15 Similarly, elements will be chosen without 15 A multiset is a set S along with a

function m : S → N where m(s) is
thought of the number of times the
element s occurs in S (also known as the
element’s multiplicity).

replacement—we cannot choose the same element twice. Next we
turn our original question into two different questions depending
on whether the order of the choices matters. For example, if our
set consisted of players on a baseball team, and we were choosing
who to bat first, second, third, and fourth, then different orderings
of the same four players would matter. On the other hand, if our
set consisted of Reed faculty members, and we were choosing three
people to serve on a committee, all that would matter is the resulting
set of three people, not the order in which they were chosen. We now
consider both versions of our question.

Definition 43. Let S be a set. A k-arrangement of S is an ordered list
of k distinct elements from S. A k-combination of S is a subset of S of More formally, an ordered list of k

elements from S can be thought of as a
function [k] → S. A k-arrangement is
then an injective function [k]→ S.

cardinality k.

Example 44. Let S = [3] = {1, 2, 3}. Then there are six 2-arrangements
of S: (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), and (3, 2); and there are three 2-
combinations: {1, 2}, {1, 3}, and {2, 3}. Note: each 2-combination {i, j}
corresponds to two 2-arrangements: (i, j) and (j, i).

Proposition 45. Let S be a finite set with n elements. Then the number
of k-arrangements of S is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
,

and the number of k-combinations of S is given by the binomial
coefficient (n

k).

Definition 46. Let n, k ∈ Z. The
corresponding binomial coefficient, read n
choose k, is(

n
k

)
=

{
n!

k!(n−k)! =
n(n−1)···(n−k+1)

k! if 0 ≤ k ≤ n

0 otherwise.Proof. Counting k-arrangements is a straightforward application
of the multiplicative counting principle: there are n choices for the
first element in the list, n− 1 choices for the second, and so on down
to n− k + 1 choices for the k-th element. (Note: the number n− k + 1
may seem a strange here, but going from n to n − k + 1, not n − k,
gives k choices.) Therefore, the number of k-arrangements is

n(n− 1) · · · (n− k + 1) =
[n(n− 1) · · · (n− k + 1)][(n− k)(n− k− 1) · · · 2 · 1]

(n− k)(n− k− 1) · · · 2 · 1
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=
n!

(n− k)!
.

Counting k-combinations is an application of the overcounting
principle: each k-arrangement is a list (s1, . . . , sk) of k distinct elements
of S. Each of the k! rearrangements of these k elements corresponds to
the same k-combination {s1, . . . , sk}. So the number of k-combinations
is the number k-arrangements, n!/(n− k)!, divided by k!.

There is usually a hard way and easy way to compute a binomial
coefficient. For instance, consider(

10
3

)
=

10!
3!7!

.

One could compute 10!, 3!, and 7!, then divide (= hard). Or one could
take every opportunity to cancel like terms in the numerator and
denominator before multiplying:

10!
3!7!

=
10 · 9 · 8 · 7 · 6 · · · 2 · 1
(3 · 2 · 1)(7 · 6 · · · 2 · 1) =

10 · 9 · 8
3 · 2 · 1

=
10 · (3 · 3) · (4 · 2)

3 · 2 · 1 =
10 · (3) · (4)

1
= 120.

To compute (10
3 ), an expert would write down 10·9·8

3·2·1 , automatically
canceling the 7!, and then proceed to cancel like terms.

Exercise 47. Suppose k, n ∈N with k ≤ n. Give two proofs that(
n
k

)
=

(
n

n− k

)
.

The first proof should be algebraic, using the defining formulas. The
second should explain why both sides of the equality count the same
thing.

Using Exercise 47, to compute (10
7 ), an expert would realize that this is

the same as (10
3 ) and proceed as above.

Figure 12: The integer lattice in R2.

Example 48. Consider the set of integer points Z2 embedded in the
ordinary Euclidean plane R2, as usual. In this context, we call Z2

a lattice and it points lattice points. A lattice path is then a sequence,
i.e., an ordered list, of lattice points. A NE lattice path is a lattice
path (a1, b1), (a2, b2), . . . such that for all i > 1 either (ai, bi) =

(ai−1, bi−1 + 1) or (ai, bi) = (ai−1 + 1, bi−1). These are called north
and east steps, respectively. (Imagine an unusual city with a grid of
streets running east and north, all one-way.)

Here is an example of two lattice paths starting at (0, 0) and ending
at (6, 5):
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(0, 0)

(6, 5)

NNEENENEENE
(0, 0)

(6, 5)

ENENEENNEEN.

We label each path with a word in the letters N (for north) and E (for
east), illustrating the obvious bijection between lattice paths and such
words.

Proposition 49. Let a, b ∈ N. Then the number of NE lattice paths
from (0, 0) to (a, b) is (

a + b
a

)
=

(
a + b

b

)
.

Exercise 50. Prove Proposition 49.

A DECK OF CARDS provides fertile ground for exercising our newly-
acquired counting skills. There are many types of card decks, but we
will assume the standard deck contains 52 cards consisting of four
suits—clubs ♣, diamonds ♦, hearts ♥, and spades ♠—with each suit
containing 13 denominations: 2, 3, . . . , 10, jack, queen, king, ace. The
ace is usually considered the highest card in each suit.

For counting problems it will be convenient to know the 5-card
poker hands. Examples of these appear in Figure 13. To specify a
few: a flush is five cards of the same suit; a full house is three of one
denomination and two of another; and straight is five denominations
in a row. A royal flush is a straight flush from a 10 up to the ace.

Figure 13: The five-card poker hands
listed from highest (1) to lowest (10).

Example 51. How many full houses are there? A full house con-
sists of three cards from one denomination and two from another.
There are (13

2 ) ways to pick the two denominations. After having
made this choice, we need to choose which denomination will ap-
pear three times. There are two possibilities. There are four cards of
each denomination—one of each suit. Thus, there are (4

3) choices for
the denomination that appears three times and (4

2) choices for the
denomination that appears two times. By the multiplicative counting
principle, the total number of full houses is(

13
2

)
· 2 ·

(
4
3

)(
4
2

)
=

13 · 12
2 · 1 · 2 · 4 · 6 = 3, 744.

Exercise 52. Show that there are 1, 098, 240 one pair poker hands.
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Figure 14: Possibly the oldest extant full
deck of cards (circa 1470–80).

PERMUTATIONS ARE ONE OF THE MOST IMPORTANT discrete
structures. In the language from above, they are n-arrangements of
sets of size n, but we would like to provide a self-contained definition.

The symbol S is a Fraktur or Gothic
version of the letter S. The code for it
in TEX is \mathfrak{S}. One often
sees Sn in place of Sn, but that’s not as
much fun.

Definition 53. A permutation is a bijection from a set to itself. The set
of permutations of a set X is denoted S(X), and the notation Sn is
reserved for the set of bijections of the set [n] := {1, . . . , n}.

The number of permutations of a set X of size n is n!. If σ : X → X
is a permutation, then there are n choices for σ(1), and for each of
these choices, there are n− 1 choices for σ(2), and so on.
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Equivalence relations

EQUIVALENCE RELATIONS will allow us to formalize the overcount-
ing principle, and we will develop their theory before delving further
into the magic of binomial coefficients.

Consider the problem of putting King Arthur and his twelve
knights in a line. Thirteen different people can take the first spot in
line, twelve can take the second, etc., until there is only one person
who can take the final spot. We deduce that there are

13 · 12 · 11 · · · 2 · 1 = 13!

ways for the heroes of Camelot to queue up.
Note, though, that Arthur and his knights are famous enough

that they rarely have to wait in line. With the extra leisure time this
affords, they like to sit at the Round Table. Since the table is round,
we consider seatings to be “the same” or “equivalent” if one can be
rotated to produce the other. (Rotation by 0◦ counts, so any given
seating is equivalent to itself.)

With this notion of rotational equivalence in hand, we can break up
the queuings of the first paragraph into “equivalence classes” of seat-
ings that can be rotated into each other. Since each such equivalence
class consists of 13 lineups, there are a total of

13!/13 = 12!

seatings that cannot be rotated into each other.
Our present task is to formalize the above ideas and see how they

fit into combinatorics.

Definition 54. A relation R on a set A is a subset of A× A. We write
aRb when (a, b) ∈ R.

The idea here is to think of a being Related (somehow) to b when
aRb, i.e., when (a, b) ∈ R. We frequently use a special symbol such as
≤, >, ⊆, or ∼ to denote a relation.

Definition 55. A relation ∼ on A is an equivalence relation if it is

(i) reflexive: for all a ∈ A, a ∼ a,
(ii) symmetric: for a, b ∈ A, if a ∼ b, then b ∼ a, and

(iii) transitive: for a, b, c ∈ A, if a ∼ b and b ∼ c, then a ∼ c.

We frequently use symbols like ∼, ', ∼=, or ≡ to denote equivalence
relations.

Let S denote the set of students in a class. We can define an equiva-
lence relation ∼= on S by declaring that s ∼= t if and only if s and t have
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the same birthday. Let’s check that it forms an equivalence relation.
Clearly for each s ∈ S, s has the same birthday as s, so s ∼= s. If s has
the same birthday as t, then t has the same birthday as s, so s ∼= t
implies that t ∼= s. Finally, if s has the same birthday as t and t has the
same birthday as u, then s has the same birthday as u, so the relation is
transitive. We conclude that ∼= is an equivalence relation on S.

Now consider the King Arthur problem again. To make life easier,
let’s number the Camelotians 1, 2, 3, . . . , 13. Let Q denote the set of
queues of 1, 2, . . . , 13, i.e., the set of permutations of 13 = {1, 2, . . . , 13}.
Two queues create the same seating if we can cyclically reorder (rotate
the table) from one to the other, so we declare q1 ∼ q2 when we can
cycle q2 into q1. The reader may check that this forms an equivalence
relation.

The following definition allows us to easily speak about the set of
queuings equivalent to a given queue.

Definition 56. Let A be a set and let ∼ be an equivalence relation on A.
For a ∈ A, the equivalence class of a, written [a]∼ (or just [a] if ∼ is clear
from context) is the set If n ∈N, the reader will observe that the

notation [n] is now overloaded; it could
refer to the set {1, 2, . . . , n} or, if we are
working with an equivalence relation
on N, the equivalence class of n. Our
intended meaning will always be clear
from context.

[a]∼ := {b ∈ A | a ∼ b}.

In the King Arthur problem, if q is a queuing, then [q]∼ is the set of
permutations that can be rotated into q. For instance,

[(1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13)] =

{(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),

(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1)

(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2)

(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3)

(5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4)

(6, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5)

(7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6)

(8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7)

(9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8)

(10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9)

(11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

(13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)}.

More generally, think of the elements of a set as the residents of
an apartment complex. Declare two elements equivalent if they live
together. Then the equivalence classes are naturally in bijection with
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the apartments in the apartment building: we can think of an equiv-
alence class as the set of people inhabiting a particular apartment.16 16 This is true under mild hypotheses

on the apartment building: every
apartment has at least one resident,
and no residents live in more than one
apartment.

The following theorem sharpens this analogy.

Theorem 57. If A is a set and ∼ is an equivalence relation on A, then for all
a, b ∈ A

(1) a ∈ [a],
(2) if a ∼ b, then [a] = [b],
(3) if a 6∼ b, then [a] ∩ [b] = ∅, and
(4)

⋃
a∈A[a] = A.

Some comments on the notation are in order. First, a 6∼ b simply
means that (a, b) is not an element of the relation ∼. Second, the
indexed union

⋃
a∈A[a] may look intimidating, but it just means that

we take the union of all the sets [a] where a runs through A.

Proof. (1) Since ∼ is reflexive, a ∼ a and thus a ∈ [a].
(2) Suppose a ∼ b and c ∈ [a]. Then, by definition, a ∼ c. Further-

more, symmetry tells us that b ∼ a. Thus transitivity (applied
to b ∼ a, a ∼ c) implies that b ∼ c, i.e., c ∈ [b]. This proves that
[a] ⊆ [b]. The reader may now write down a nearly identical proof
that [b] ⊆ [a], whence [a] = [b].

(3) Suppose a 6∼ b. We must show that if c ∈ [a], then c /∈ [b]. Suppose
for contradiction17 that c ∈ [a] and c ∈ [b]. Then a ∼ c and b ∼ c. 17 This is our first encounter with a

proof by contradiction. In such proofs,
we assume the hypothesis of our
statement (that is, the “if” part of an
if-then statement) and the negation
of the conclusion of our statement.
Under these assumptions, we derive an
absurdity — something which cannot
be. It follows (from Aristotle’s law of
the excluded middle) that the conclusion
of our original statement must be true
when the hypothesis is assumed. The
authors have purposefully chosen to
only use the word constructivist once in
this sidenote.

By symmetry and transitivity, we learn that a ∼ b, a contradiction.
We conclude that if a 6∼ b, then [a] ∩ [b] = ∅.

(4) Since each [a] is a subset of A, we know that
⋃

a∈A[a] ⊆ A. The
opposite inclusion follows from (1): if b ∈ A, then b ∈ [b], and thus
b ∈ ⋃a∈A[a] because [b] is one of the terms in the indexed union.

Properties (3) and (4) of equivalence classes in Theorem 57 tell
us that equivalence classes form a partition. We offer the following
definition which formalizes our discussion of partitions on p.19.

Definition 58. A family of subsets Pi ⊆ A, where i ranges through an
index set I, is a partition of A if

⋃
i∈I Pi = A and i 6= j ∈ I implies that

Pi ∩ Pj = ∅.

Going back to our apartment complex analogy, we have a set of
residents A and then sets Pi of residents in apartment i for each i ∈ I,
where I is the set of apartments.

We have seen that an equivalence relation on a set A produces a
partition of A into equivalence classes. The converse is true as well:
each partition produces an equivalence relation on A.
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Theorem 59. Suppose P = {Pi ⊆ A | i ∈ I} is a partition of A. Define a
relation ∼ on A where a ∼ b if and only if there exists Pi ∈ P such that both
a and b belong to Pi. Then ∼ is an equivalence relation.

Proof. We first check that ∼ is reflexive. Given a ∈ A, we know that a
is in some Pj, j ∈ I because

⋃
i∈I Pi = A. Thus a ∼ a.

The definition of ∼ does not depend on the order of a and b, so ∼ is
clearly symmetric: a ∼ b implies that b ∼ a.

For transitivity, simply note that if both a and b are in Pi, and both
b and c are in Pi, then a and c are in Pi. Thus a ∼ b and b ∼ c implies
that a ∼ c.

The reader may check18 that the constructions of this section give 18 One of the most dangerous phrases
in mathematical writing! You really
should check when you see this, as it is
too often a standin for “The author is
too lazy to check.”

us a bijection between equivalence relations on A and partitions of A.
Since we are studying combinatorics in this class, it is only natural

to ask how many partitions there are of A when |A| < ∞. Like many
such questions, the answer is as devious as the query is innocent. See
OEIS’s entry on the Bell numbers (A000110) for more information.

ENUMERATING EQUIVALENCE CLASSES is often important in com-
binatorics. Thinking about King Arthur’s Round Table again, we see
that we are trying to enumerate (count) the number of equivalence
classes on Q, the set of queuings, with respect to the rotation equiv-
alence relation ∼. The set of equivalence classes gets its own special
notation: Q/∼. We can reinterpret the argument from the introduc-
tion as saying that each equivalence class is of size 13. Thus the total
number of equivalence classes is

|Q/∼| = |Q|/13 = 13!/13 = 12!.

This is the overcounting principle! If A is a set equipped with an
equivalence relation ∼, and each of the ∼ equivalence classes has size
m, then

|A/∼| = |A|/m.

There is another way to count equivalence classes that we can
again illustrate with the Round Table, namely, the method of choosing
representatives. Suppose we have a way of picking exactly one repre-
sentative from each equivalence class in A/∼. Then the total number
of such representatives will be equal to |A/∼|. How can we do this
for the Round Table problem? Well, since we can rotate the table, let’s
always put King Arthur at the top of it. Within each equivalence class
of seatings, exactly one has Arthur at the top, so that will do the trick.
Once we’ve put Arthur at the top, there are 12 ways to fill the seat to
his left, then 11 ways to fill the left to the left of that one, etc., revealing
that there are

12 · 11 · 10 · · · 1 = 12!

https://oeis.org/A000110
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such representatives. We conclude that there are 12! seatings (|Q/∼|)
as well.

Let’s do one more familiar example through the lens of equivalence
relations. Consider the word OUROBOROS. How many distinct
strings can we make from the letters in OUROBOROS? We approach
this by enumerating a larger set and then putting an equivalence
relation on it so that the equivalence classes correspond to the distinct
strings.

Let P be the set of permutations of the nine symbols

O1, U, R1, O2, B, O3, R2, O4, S.

We see that |P| = 9!. For p, q ∈ P, declare that p ' q when p and
q produce the same string after forgetting the subscripts. (For in-
stance, O1O2UO3OR1O4R2BS ' O3O4UO2R2O1R1BS because
OOUORORBS = OOUORORBS.) If we can count |P/'|, then we
will have counted the number of distinct strings made from the letters
in OUROBOROS. To this end, note that each equivalence class con-
tains 4! · 2! = 48 permutations. (This is the number of ways to reorder
the four O’s and two R’s separately.) Thus the overcounting principle
tells us there are |P/'| = 9!/48 = 7, 560 strings.
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Pascal’s triangle and the binomial theorem

THERE ARE ENDLESS INTERESTING RELATIONS among binomial
coefficients. Recall the definition:

Definition 60. Let n, k ∈ Z. Then the corresponding binomial coefficient,
read n choose k, is(

n
k

)
=

 n!
k!(n−k)! =

n(n−1)···(n−k+1)
k! if 0 ≤ k ≤ n

0 otherwise.

We saw that (n
k) counts the number of ways of choosing k elements

from and n-element set when order does not matter.
The most basic combinatorial identity involving binomial coeffi-

cients is

Proposition 61. For all n, k ∈ Z,(
n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

Proof. We will give two proofs for the case where 0 ≤ k ≤ n, and leave
the other cases as an exercise. An equation of the form A = B is some-

times called an identity. A combinatorial
proof of an identity consists of describ-
ing why the two sides of the identity
count the same collection of discrete
structures.

Combinatorial proof. Let S be a set with n + 1 elements, and let T be
set of subsets of S with cardinality k + 1. Then (n+1

k+1) = |T|. Our goal is
to show that |T| is also given by (n

k) + ( n
k+1). Fix an element s ∈ S. Then

there are two types of elements of T: those that contain s, and those
that do not. Call the first type T+ and the second T−. Then we have a
partition T = T+ q T−, and so |T| = |T+|+ |T−|. Since every element
of T+ contains s, forming an element of T+ consists of choosing k
more elements from S \ {s}, i.e., of choosing k elements from a set
of size n. Therefore, |T+| = (n

k). To form an element of T−, we need
to choose k + 1 from S \ {s}, and therefore, |T−| = ( n

k+1). The result
follows.

Algebraic proof. Calculate:(
n
k

)
+

(
n

k + 1

)
=

n!
k!(n− k)!

+
n!

(k + 1)!(n− k− 1)!

=
n!(k + 1)

(k + 1)!(n− k)!
+

n!(n− k)
(k + 1)!(n− k)!

=
n!(k + 1) + n!(n− k)

(k + 1)!(n− k)!

=
n!(k + 1 + n− k)
(k + 1)!(n− k)!
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=
n!(n + 1)

(k + 1)!(n− k)!

=
(n + 1)!

(k + 1)!((n + 1)− (k + 1))!

=

(
n + 1
k + 1

)
.

Figure 15: Yang Hiu (Pascal’s triangle)
as appearing in a Chinese text from 1303
AD.

The nonzero binomial coefficients can be arranged to give Pascal’s
triangle (cf. Figure 15):

(0
0)

(1
0) (1

1)

(2
0) (2

1) (2
2)

(3
0) (3

1) (3
2) (3

3)

(4
0) (4

1) (4
2) (4

3) (4
4)

(5
0) (5

1) (5
2) (5

3) (5
4) (5

5)

. .
. ...

...

Evaluating these expressions gives:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

. .
. ...

...

row 0

row 1

...

row 5

Each entry in the triangle is the sum of the two closest entries in the
preceding row:

(n
k) ( n

k+1)

(n+1
k+1)
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The above pattern also holds for entries on the boundary of Pascal’s
triangle if one thinks of each row as padded with 0s (corresponding to
values of n and k for which (n

k) = 0).

Exercise 62. Explain why Pascal’s triangle is symmetric about its
central vertical axis.

1 3 6 10

Figure 16: The n-th triangular number
is Tn = (n+1

2 ). Together, they form a
diagonal in Pascal’s triangle.

Exercise 63. The triangular numbers, Tn, are shown in Figure 16. We
see that Tn = 1 + 2 + · · · + n = (n+1)n

2 = (n+1
2 ). (We will see later,

in Proposition 69, where (n+1)n
2 comes from.) Find a formula for the

number of spheres in a triangular pyramid of spheres with n levels
(cf. Figure 17), and show where they sit in Pascal’s triangle.

Figure 17: A triangular pyramid of
spheres.

We pause now to introduce Sigma (∑) notation, which will al-
low us to write summations in a compact format. Suppose that
a0, a1, a2, . . . , an is a sequence of expressions. For instance, we could
have a0 = (n

0), a1 = (n
1), a2 = (n

2), . . . , an = (n
n), i.e., ak = (n

k) for
k = 0, . . . , n. Then we define

n

∑
k=0

ak = a0 + a1 + a2 + · · ·+ an.

In the example with ak = (n
k), we have

n

∑
k=0

ak =
n

∑
k=0

(
n
k

)
=

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
.

We call k the index of the summation, and we can allow this index to
start at values other than 0 by changing the expression under the ∑.
For instance,

7

∑
k=3

k2 = 32 + 42 + 52 + 62 + 72.

Proposition 64. The sum of the elements in the n-th row of Pascal’s
triangle is 2n:

n

∑
k=0

(
n
k

)
=

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
n

)
= 2n.

Proof. We will give a combinatorial proof now and will later give a
proof based on the binomial formula Corollary 66 — see Exercise 68.
Let X be the set of all 2nsubsets of [n]. For k = 0, 1, . . . , n, let Xk be
the set of subsets of [n] having k elements. Since the Xk partition, we
have |X| = ∑n

k=0 |Xk|. The result now follows since |Xk| = (n
k).

Here are just a few more identities involving binomial coefficients:
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(i) (n
k) =

n
k (

n−1
k−1) (ii) (n

k)(
n−k
` ) = (n

`)(
n−`

k )

(iii) ∑n
k=0(−1)k(n

k) = 0 (iv) ∑n
k=0 k(n

k) = n2n−1

(v) ∑`
k=0 (

m
k )(

n−m
`−k ) = (n

`) (vi) ∑n
k=0 (

n
k)

2 = (2n
n )

(vii) ∑`
k=0 (

n+k
k ) = (n+`+1

` ) (viii) ∑a
k=−a(−1)k(a+b

a+k)(
b+c
b+k)(

c+a
c+k) =

(a+b+c)!
a!b!c!

(ix) ∑n
`=k (

`
k) = (n+1

k+1) (x) ∑
b n

2 c
k=0 (

n−k
k ) = Fn.

In the last identity, Fn is the n-th Fibonacci number from p. 47.

Explain why binomial identity (ix) is
known as the hockey stick identity.

THE BINOMIAL THEOREM relates the expansion of (x + y)n to Pascal’s
triangle. To see the pattern, consider small cases of n:

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 3xy3 + y4

(x + y)5 = x5 + 5x4y + 10x3y2 ++10x2y3 + 5xy4 + y5.

The coefficients in the expansion of (x + y)n are given by the n-th row
of Pascal’s triangle.

Theorem 65 (The binomial theorem). For n ∈N,

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk

=

(
n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n
n

)
yn.

Proof. Consider expanding

(x + y)n = (x + y)(x + y) · · · (x + y).

We will want to distinguish between the n factors (x + y) on the right-
hand side. So label them as f1, . . . , fn, and thus we can talk about the i-
th factor, fi. Expand the right-hand side using the distributive law,
and you will see that there is a one-to-one correspondence between
monomials in the expansion and sequences of choices consisting
of a selection of x or y from each fi. For example, think of expand-
ing (x + y)3 as growing the following binary tree from top down. The
factors f1, f2, and f3 are colored blue, red, and black, respectively. In
the first step down from the top, we apply the distributive law to
expand using f1. In the second step, we expand using f2, and then
finally, we use f3:
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(x + y)(x + y)(x + y)

x(x + y)(x + y) y(x + y)(x + y)

x y

xx(x + y) xy(x + y) yx(x + y) yy(x + y)

x y x y

xxx xxy xyx xyy yxx yxy yyx yyy

x y x y x y x y

Forgetting the colors, writing the monomials in “alphabetical order”,
and combining like terms gives:

(x + y)3 = xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy

= x3 + x2y + x2y + xy2 + x3 + xy2 + xy2 + y3

= x3 + 3x2y + 3xy2 + y3.

To connect the terms in the final expression back to binomial coeffi-
cients, let’s focus on 3xy2. How did it arise? At the top of the tree we
have three factors, colored blue, red, and black. Traveling down the
tree, a monomial of the form xy2 appears exactly by choosing two to
provide ys. There are (3

2) = 3 ways to do that.
As another example, before we proceed to the general proof, con-

sider

(x + y)5 = (x + y)(x + y)(x + y)(x + y)(x + y)

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

Here we have factors f1, f2, f3, f4 and f5. The term 10x2y3, for example,
arises from all the ways we can chose exactly three of the five fi to
provide ys (and the remaining two provide xs by default). Thus, in the
expansion, the monomial x2y3 appears (5

3) = 10 times.
In general, there is a one-to-one correspondence between monomi-

als of the form xn−kyk in the expansion of (x + y)n and the choice of k
of the factors f1, . . . , fn to provide ys (which means the remaining n− k
factors provide xs). Thus, the coefficient of xn−kyk is the number
of ways of choosing a subset of size k from a set with n elements,
i.e., (n

k).

Corollary 66. For n ∈N,

(1 + y)n =
n

∑
k=0

(
n
k

)
yk
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=

(
n
0

)
+

(
n
1

)
y +

(
n
2

)
y2 + · · ·+

(
n

n− 1

)
yn−1 +

(
n
n

)
yn.

Proof. Set x = 1 in Theorem 65.

Corollary 67.

n

∑
k=0

(−1)k
(

n
k

)
=

(
n
0

)
−
(

n
1

)
+ · · ·+ (−1)n

(
n
n

)
= 0.

Proof. Set y = −1 in Corollary 66.

Exercise 68. Use the binomial theorem to give a quick algebraic proof
of Proposition 64.
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Induction

A PROOF BY INDUCTION is often likened to the following method
of convincing someone that you can climb a ladder: first you show
that (i) you can step onto the first rung of the ladder, and then (ii) you
show that, in general, if you can get to the n-th rung, then you know
how to get to the (n + 1)-st rung. The idea is parts (i) and (ii) together
show that you can reach the second rung. Then, knowing you can
reach the second rung (n = 2), applying (ii) again shows that you can
reach the third rung (n + 1 = 3). By repeatedly applying (ii), you can
reach any particular rung after a finite number of steps.

The goal of this section is to make sure you can write a model proof
by induction. We start with an example.

Proposition 69. For each integer n ≥ 1,

1 + 2 + · · ·+ n =
n(n + 1)

2
=

(
n + 1

2

)
.

Proof. We will prove this by induction. First note that the statement
holds for the base case, n = 1:

1 =
1(1 + 1)

2
.

Next, suppose the statement holds for some n ≥ 1. It follows that

1 + 2 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
,

and the result then holds for n + 1, too. Hence, the statement holds for
all n ≥ 1 by induction.

1 + 2 + 3 + 4 + 5 + 6
6 + 5 + 4 + 3 + 2 + 1
7 + 7 + 7 + 7 + 7 + 7

(1)

(2)

+
= 6 · 7

Two alternate proofs of Proposition 69
(for the case n = 6). For (1), find the
desired sum by dividing by 2. For (2),
note that the box has total area 6 · 7
and, again, divide by 2.

The example just given adheres to the following template: 19 19 This template is roughly what ev-
ery mathematician expects from an
induction proof. You should not deviate
from it unless you have a good reason,
and in that case, it will probably be
necessary to carefully guide your reader
through the modified structure of your
argument.

Proposition 70.

for n ≥ 1.

Proof. We will prove this by induction. First note that the statement
holds when n = 1:

Next, suppose the statement holds for some n ≥ 1. It follows that
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and the result then holds for n + 1, too. Hence, the statement holds for
all n ≥ 1 by induction.

Some essential features of the template:

· In the first sentence, inform your reader that your proof will be by
induction. The reader will then know what to expect.

· The sentence

Next, suppose the statement holds for some n ≥ 1.

is known as the induction hypothesis, and the word “some” in it
is crucial. If it is omitted, you would then be supposing that the
statement holds for n ≥ 1, in which case your are supposing exactly
what you are trying to prove!

· End your proof with a � so that the reader knows the proof is
finished.

Upon first seeing an induction proof, it is easy to think that we are
cheating by supposing the statement is true for some n. However, we
are not saying the statement is actually true. Instead, we show that if
the statement is true for some n, then it must also be true for n + 1. By
combining this fact with the base case, we can then conclude the result
holds for all n.

Later, we will see some variations of an induction proof that are
equally valid. For instance, could replace n ≥ 1 with n ≥ k where k is
any other fixed integer. In that case, the proof starts by verifying the
base case n = k. Another common variation is to alter the induction
hypothesis as follows:

Next, suppose the statement holds for k = 1, 2, . . . , n for some n.

The proof again proceeds to show the result then holds for n + 1. This
variation is sometimes called strong induction.

THE F IBONACCI NUMBERS are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

Their formal definition is given by the recurrence

F0 = 0
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F1 = 1

Fn = Fn−1 + Fn−2 for n ≥ 2.

Example 71. Suppose you are ascending a flight of n stairs by taking
some combination of single and double steps, i.e., one or two steps at
a time. Let Sn be the number of different combinations of these steps
that will take you to the n-th stair, and for convenience, take S0 = 0.
When n = 1, there is only one possibility: take a single step. So S1 = 1.
When n = 2, there are two possibilities: take two single steps or
one double step. Now consider the case where n ≥ 2. Suppose
you have just arrived at the n-th stair. Where were you just before?
There are two possibilities: either you were on stair n− 1 and took a
single step, or you were on stair n− 2 and took a double step. There
are Sn−1 combinations that get you to stair n − 1 and Sn−2 that get
you to stair n− 2. We conclude that Sn = Sn−1 + Sn−2. The sequence
of Sn satisfy the same recurrence as the Fibonacci numbers, and
hence, Sn = Fn.

There are numerous relations among the Fibonacci numbers. Since
the Fibonacci numbers are defined by a recurrence, these relations can
often be proved by induction. We give a couple of examples.

Proposition 72. For n ≥ 0,

n

∑
k=0

Fk = F0 + F1 + · · ·+ Fn = Fn+2 − 1.

Proof. We prove this by induction. The base case of n = 0 holds:

0

∑
k=0

Fk = F0 = 0 = F0+2 − 1.

Suppose the result holds for some n ≥ 0. Then

n+1

∑
k=0

Fk = (F0 + · · ·+ Fn) + Fn+1

= (Fn+2 − 1) + Fn+1

= (Fn+1 + Fn+2)− 1

= Fn+3 − 1

= F(n+1)+2 − 1.

The result then holds for n + 1, as well. Therefore, the result holds in
general by induction.

Proposition 73. For n ≥ 1,

F2
n + F2

n−1 = F2n−1 and F2
n+1 − F2

n−1 = F2n.
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Proof. We will prove the statement that both equalities hold for all n ≥
1 by induction. The base case holds since This technique of proving multiple

identities within the same inductive
proof is called simultaneous induction.F2

1 + F2
0 = 1 = F1

and
F2

2 − F2
0 = 1 = F2.

Suppose both identities hold for some n. We now check that each
must then hold for the case n + 1. First,

F2
n+1 + F2

n = F2
n+1 + F2

n + (F2
n−1 − F2

n−1)

=
(

F2
n + F2

n−1

)
+
(

F2
n+1 − F2

n−1

)
= F2n−1 + F2n

= F2n+1 = F2(n+1)−1.

Next,

(induction)

We just saw that F2
n+1 + F2

n = F2n+1
follows from our induction hypothesis.

(Fn+1 = Fn + Fn−1 ⇒ Fn = Fn+1 − Fn−1)

(induction)

F2
n+2 − F2

n = (Fn+1 + Fn)
2 − F2

n

=
(

F2
n+1 + 2Fn+1Fn + F2

n

)
− F2

n

=
(

F2
n+1 + F2

n

)
+ 2Fn+1Fn − F2

n

= F2n+1 + 2Fn+1Fn − F2
n

= F2n+1 + 2Fn+1Fn − Fn (Fn+1 − Fn−1)

= F2n+1 + Fn+1Fn + FnFn−1

= F2n+1 + (Fn+1 + Fn−1) Fn

= F2n+1 + (Fn+1 + Fn−1) (Fn+1 − Fn−1)

= F2n+1 +
(

F2
n+1 − F2

n−1

)
= F2n+1 + F2n

= F2n+2 = F2(n+1).

Thus, both identities hold for n + 1, as well. The result follows by
induction.

Now consider tiling (completely) a 2× n chessboard with 2× 1
dominoes. Each domino must cover exactly two squares but may be
placed horizontally or vertically.

One of the F6 = 8 domino tilings of
a 2× 5 chessboard.

Proposition 74. Let an be the number of tilings of a 2× n checkboard.
Then an = Fn+1 for n ≥ 1.

Proof. It is easy to check that a1 = 1 and a2 = 2. We proceed by strong
induction. Fix n ≥ 2 and suppose that an = Fn+1 and an−1 = Fn. In
a 2× (n + 1) chessboard, the top right square must be covered by a
horizontal or a vertical domino. In the first case, another horizontal
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domino must be directly below the top right one, and thus it remains
to fill a 2× (n− 1) board with n− 1 dominoes. By the strong induction
hypothesis, we can do this in an−1 = Fn many ways. In the vertical
case, it remains to fill a 2× n board with n dominoes, which we can do
in an = Fn+1 many ways. Since the cases are mutually exclusive, we
conclude that the number of ways the board may be tiled is

an+1 = Fn + Fn+1 = Fn+2,

finishing our proof.
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Principle of inclusion/exclusion

Let A1, A2, and A3 be finite sets. In the end-of-chapter problems, we
have seen that

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

There is a similar formula for three sets. To count the elements A1 ∪
A2 ∪ A3, start with the approximation

|A1 ∪ A2 ∪ A3| ≈ |A1|+ |A2|+ |A3|.

The problem here is that any element that is in a pair of these sets is
overcounted. So as a second approximation, we can try

|A1∪A2∪A3| ≈ |A1|+ |A2|+ |A3|− |A1∩A2|− |A1∩A3|− |A2∩A3|.

To see why we again have only an approximation, suppose there
is an element in all three sets: a ∈ A1 ∩ A2 ∩ A3. In this second
approximation, a is counted once for each |Ai| summand, but then
subtracted off once for each |Ai ∩ Aj|. In total, a is not counted at all.
So we need to add terms in the intersection of all three sets back in to
finally get the correct formula:

|A1∪A2∪A3| = |A1|+ |A2|+ |A3|− |A1∩A2|− |A1∩A3|− |A2∩A3|+ |A1∩A2∩A3|.

Comparing the formulas for |A1 ∪ A2| and for |A1 ∪ A2 ∪ A3|, it is
not hard to see the general pattern, although writing it down requires
a bit of notation.

Theorem 75. Suppose A1, A2, . . . , An are finite sets. Then

|A1 ∪ A2 ∪ · · · ∪ An| = ∑
1≤i1≤n

|Ai1 | − ∑
1≤i1<i2≤n

|Ai1 ∩ Ai2 |+ · · ·

+ (−1)k−1 ∑
1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |+ · · ·

+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|,

or, equivalently, ∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ = ∑
∅ 6=J⊆[n]

(−1)|J|−1

∣∣∣∣∣∣⋂i∈J
Ai

∣∣∣∣∣∣ .

Proof. Let a ∈ A1 ∪ · · · An. Then a is counted once on the left-hand side
of the above equation. To prove the principle of inclusion/exclusion,
we need to show a is counted exactly once on the right-hand side.

Say a is in exactly the t sets Aj1 , · · · , Ajt . Then a is counted t = (t
1)

times in ∑1≤i1≤n |Ai1 |. It is counted −(t
2) times in −∑1≤i1<i2≤n |Ai1 ∩
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Ai2 |. It is counted (t
3) times in ∑1≤i1<i2<i3≤n |Ai1 ∩ Ai2 ∩ Ai3 |. And so

on. The total count is(
t
1

)
−
(

t
2

)
+ · · ·+ (−1)t−1

(
t
t

)
.

By the binomial theorem,

0 = (1− 1)t =

(
t
0

)
−
(

t
1

)
+

(
t
2

)
−
(

t
3

)
+ · · ·+ (−1)t

(
t
t

)
.

Therefore, solving for (t
0),

1 =

(
t
0

)
=

(
t
1

)
−
(

t
2

)
+

(
t
3

)
− · · ·+ (−1)t−1

(
t
t

)
.

THERE ARE 16 STUDENTS in a certain section of Math 113, and
Professor X has 16 homework problems. For the first assignment,
the Professor X chooses a bijection between the students and the
problems and uses it to assign a problem to each student. For the
second assignment, Professor X chooses another bijection at random
and uses this new bijection to assign problems. What is the probability
that no student receives the same problem twice?

To answer the question, we will first put it in a general context.
Suppose the students names are s1, . . . , s16 and problem are num-
bered 1, . . . , 16. Without loss of generality, for the first assignment,
student si gets problem i. For the second assignment, student si

gets π(i) where π ∈ S16 for some permutation π chosen at random.
The following is an example for which π was chosen randomly by a
computer:

student: s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

assign. 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
assign. 2 : 4 6 14 13 10 16 15 1 11 12 8 9 3 2 7 5.

Here π(1) = 4, π(2) = 6, . . . , π(16) = 5, and there is no value i ∈ [16]
such that π(i) = i. How likely is that?

Definition 76. Let π ∈ Sn. An element i ∈ [n] is a fixed point for π

if π(i) = i. If π has no fixed points, it is called a derangement.

To generalize our problem, we can ask

Question 77. What is the probability that a randomly chosen element
of Sn is a derangement?

Theorem 78. Let Dn be the number of derangements in Sn. Then

Dn = n!
(

1
0!
− 1

1!
+

1
2!
− · · ·+ (−1)n 1

n!

)
= n!

n

∑
k=0

(−1)k 1
k!
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Proof. For i = 1, . . . , n, define

Ai := the number of permutations of [n] fixing i

= | {π ∈ Sn : π(i) = i} |.

If π ∈ Ai, its value at i and its remaining values are a permutation of
the numbers [n] \ {i}. Therefore, |Ai| = (n− 1)!. The derangements are
exactly the elements that are in none of the Ai. It follows

Dn = n!− |A1 ∪ · · · ∪ An|.

Our strategy is to apply the principle of inclusion/exclusion to calcu-
late |A1 ∪ · · · ∪ An|.

We have

|A1 ∪ · · · ∪ An| = ∑
1≤i1≤n

|Ai1 | − ∑
1≤i1<i2≤n

|Ai1 ∩ Ai2 |+ ∑
1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3 | − · · ·

+ (−1)k−1 ∑
1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |+ · · ·

+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.

For each choice of i1, . . . , ik, we have

|Ai1 ∩ · · · ∩ Aik | = (n− k)!

since an element in the intersection has i1, . . . , ik as fixed points and
the remaining values form a permutation of the set [n] \ {i1, . . . , ik},
which has cardinality n− k. Substituting into our previous equation:

|A1 ∪ · · · ∪ An| = ∑
1≤i1≤n

(n− 1)!− ∑
1≤i1<i2≤n

(n− 2)! + ∑
1≤i1<i2<i3≤n

(n− 3)!− · · ·

+ (−1)k−1 ∑
1≤i1<i2<···<ik≤n

(n− k)! + · · ·

+ (−1)n−1(n− n)!

where, of course, (n − n)! = 0! = 1. The interesting thing about
the summands here is that they do not depend on the indices. For
instance,

∑
1≤i1<i2<i3≤n

(n− 3)! = (n− 3)! + (n− 3)! + · · ·+ (n− 3)!

where the number of summands is equal to the number of choices
for i1, i2, i3. But these indices are just arbitrary subsets of three ele-
ments from [n]. Hence,

∑
1≤i1<i2<i3≤n

(n− 3)! =
(

n
3

)
(n− 3)!.
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There is nothing special about the number 3 here. Applying the
reasoning to all of the terms in our formula gives

|A1 ∪ · · · ∪ An| =
(

n
1

)
(n− 1)!−

(
n
2

)
(n− 2)! +

(
n
3

)
(n− 3)!− · · ·

+ (−1)k−1
(

n
k

)
(n− k)! + · · ·

+ (−1)n−1
(

n
n

)
(n− n)!

or, more succinctly,

|A1 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k−1
(

n
k

)
(n− k)!.

It follows that

|A1 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k−1
(

n
k

)
(n− k)!

=
n

∑
k=1

(−1)k−1 n!
k!(n− k)!

(n− k)!

=
n

∑
k=1

(−1)k−1 n!
k!

= n!
n

∑
k=1

(−1)k−1 1
k!

and hence,

Dn = n!− |A1 ∪ · · · ∪ An|

= n!− n!
n

∑
k=1

(−1)k−1 1
k!

= n!− n!
(

1
1!
− 1

2!
+ · · ·+ (−1)n−1 1

n!

)

= n!
(

1
0!
− 1

1!
+

1
2!

+ · · ·+ (−1)n 1
n!

)
.

If we choose a random permutation, and each is equally likely, then
the probability of getting a derangement is the number of derange-
ments divided by the total number of permutations:

Dn

n!
=

(
1
0!
− 1

1!
+

1
2!

+ · · ·+ (−1)n 1
n!

)
.
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n Dn/n!

1 0.0000000
2 0.5000000
3 0.3333333
4 0.3750000
5 0.3666667
6 0.3680556
7 0.3678571
8 0.3678819
9 0.3678792
10 0.3678795
11 0.3678794
12 0.3678794

Table 3: Probabilities of derangements.

If you have taken a calculus course, you may know the Taylor
series expression for the exponention function: ex = ∑k≥0

xk

k! . It
follows that

e−1 =
(−1)0

0!
+

(−1)1

1!
+

(−1)2

2!
+

(−1)3

3!
+ · · ·

=
1
0!
− 1

1!
+

1
2!
− 1

3!
+ · · ·

Since 1
n! becomes very small quicky as n grows, we have

Dn

n!
≈ 1

e
≈ 0.3678794

for n sufficiently large.
Going back to our original problem. When n = 16, the probability

is over a third that in the second assignment, no one will receive the
same problem.
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Pigeonhole principle

OUR LAST FUNDAMENTAL COUNTING PRINCIPLE is elementary but
surprisingly useful:

Pigeonhole principle. If n + 1 objects (pigeons, perhaps) are placed
in n boxes, then at least one of the boxes will contain two objects.

Example 79. In a room with eight people, at least two were born on
the same day of the week. This follows from the pigeonhole principle:
there are eight objects (the people) and only seven boxes (the days of
the week).

We can state the pigeonhole principle in the language of functions:

If f : X → Y where |X| > |Y|, then f is not injective.

Here, X represents the pigeons, Y represents the boxes, and f is an
assignment of pigeons to boxes. Noninjectivity says there are two
pigeons that are assigned to the same box.

Example 80 (Data compression). Data compression algorithms utilize
statistical properties of a data type in order to encode data so that it
takes up less space (say, on a computer hard drive). A lossless compres-
sion algorithm encodes the data so that no information is lost — the
original data can be completely recovered from its compressed form.
An example of lossless compress is the PNG (portable network graph-
ics) format for image files. Using the pigeonhole principle, we can
show that there is a fundamental limitation to lossless compression
algorithms:

There is no lossless compression algorithm that never increases the size
of its input data files and strictly decreases the size of at least one input
file.

Assume we have an algorithm that never increases the size of a file
and decreases the size of at least one file. We will show that that
algorithm cannot be lossless. First, though, we need to be more precise
with our statement. Assume the algorithm takes as input any bit
string.20 If the input is any string w, let `(w) denote the length of w 20 An n-bit string is a sequence of

length n consisting of 0s and 1s.(the number of bits in w), and denote the output of the algorithm
by e(w). So the algorithm can be viewed as a function from bit strings
to bit strings. We are assuming that `(e(w)) ≤ `(w) for all input w and
that there exists at least one string w such that `(e(w)) < `(w). Among
all w such that `(e(w)) < `(w), let w′ be one of smallest length, i.e., if u
is any string with length smaller than that of w′, then `(e(u)) = `(u).
In particular, since `(e(w′)) < `(w′), if u has length s := `(e(w′)),
then `(e(u)) = `(u).
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We now apply the pigeonhole principle. Let B (for box) be the set
of all bit strings of length s := `(e(w′)). The string e(w′) is an element
of B, for instance. Further, as reasoned in the previous paragraph,
if u ∈ B, then e(u) ∈ B, too. Next, let P (for pigeon) be the set B ∪ {w′}.
Consider the encoding function restricted to the domain P:

e : P→ B

w 7→ e(w),

and note that e actually sends P into B: if w ∈ P := B ∪ {w′}, then
either w ∈ B or w = w′. In either case, `(e(w)) = s, and it follows
that e(w) ∈ B.

Finally, since |P| = 2s + 1 > 2s = |B|, there are more pigeons
than boxes. By the pigeonhole principle, two must be assigned to the
same box. This means there are distinct bit strings w1 and w2 such
that e(w1) = e(w2), i.e., e in not injective. Therefore, e is not a lossless
compression algorithm: give the encoded word e(w1), there is no way
to tell if it came from compressing w1 or from compressing w2.

TO SLIGHTLY GENERALIZE THE PIGEONHOLE PRINCIPLE, sup-
pose we have 26 people to assign to three teams. Trying to spread the
people out as evenly as possible, we would put 8 people on each team,
but that still leaves two people to assign. We conclude that at least one
team must have 9 members. The number 9 here is the least integer
greater than 26/3, or in standard notation: d 26

3 e.

Let x be a rational or real number. The
ceiling of x, denoted dxe, is the least
integer greater than or equal to x. The
floor of x, denoted bxc, is the greatest
integer less than or equal to x. For
example, ⌈ 9

4

⌉
= d2.25e = 3⌊ 9

4

⌋
= b2.25c = 2.

Generalized pigeonhole principle. If n objects are placed in m boxes,
then at least one box will contain d n

m e objects.



58

Recurrence relations and difference operators

A sequence valued in a set X is a function a : N → X. We typically de- The set of sequences valued in X is
denoted XN, using our standard expo-
nential notation for a set of functions.

note the values of a sequence a0, a1, a2, . . . instead of a(0), a(1), a(2), . . .,
and, we will refer to a sequence a : N → X as either a or (an) =

(an)∞
n=0. We have already encountered many sequences: n 7→ n!,

n 7→ Fn, the n-th Fibonacci number, and

n 7→ Dn = n!
n

∑
k=0

(−1)k 1
k!

,

the number of derangements of n objects, are just a few. Note that
each of these sequences is valued in N, and this is the most common
type of sequence in combinatorics. (After all, we’re trying to count
things!)

Many of these sequences satisfy a recurrence relation. That is, the n-
th term in the sequence depends on the previous terms. For instance,
since n! = n · (n− 1)!, we know that the sequence (an = n!) satisfies
the recurrence

an = nan−1.

Of course, this does not completely specify the factorial function.
We must also know the initial value, a0 = 0! = 1. The Fibonacci
numbers F = (Fn) were defined by their recurrence relation (and
initial conditions),

Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1.

And while our original derivation of Dn did not depend on a recur-
rence, we did see in the exercises that

Dn = (n− 1)(Dn−1 + Dn−2) with D0 = 1, D1 = 0.

Our present goal is to develop some general tools for solving
recurrence relations, that is, finding closed formulæ for sequences
defined by a recurrence relation. In this section, we will focus on the
method of finite differences, which will allow us to determine when
a sequence is polynomial. In the next section, we briefly preview A sequence a : N → R is polynomial

if there is a polynomial p(x) = cdxd +
. . . + c1x + c0 such that an = p(n) for all
n ∈N.

generating functions, a powerful method that leverages the arithmetic
of infinite series.

Before we take on this labor, we formally define recurrence rela-
tions and state some basic properties.

Definition 81. Fix an integer k ≥ 1. A sequence a = (an) satisfies a
recurrence relation of order k if there is a function Here Xk refers to the k-fold Carte-

sian product of X with itself:
Xk = X× · · · × X︸ ︷︷ ︸

k factors

.ϕ : N× Xk → X
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such that
an = ϕ(n, an−1, . . . , an−k)

for all n ≥ k.

We will generally think of ϕ as a “formula” for the n-th term of
the sequence in terms of the previous k terms. In this language, the
recurrence an = nan−1 is represented by the function ϕ : N×N →
N given by ϕ(n, m) = nm. Similarly, the Fibonacci recurrence is
represented by ϕ : N×N2 → N given by ϕ(n, f , g) = f + g, and the
derangement recurrence is ϕ(n, f , g) = (n− 1)( f + g).

It is generally the case that recurrence relations and initial condi-
tions specify a sequence.

Theorem 82. Suppose that a and b are sequences that

· satisfy the same recurrence relation of order k, and

· have the same initial conditions: ai = bi for 0 ≤ i ≤ k− 1.

Then a = b. Of course, a = b means that an = bn for
all n ∈N.

Exercise 83. Write a short proof of Theorem 82 using strong induction.

THE DIFFERENCE OPERATOR is a function

∆ : XN −→ XN

taking a sequence a = (an) to the sequence ∆[a] = (∆[a]n) given by

∆[a]n = an+1 − an.

(Here of course we are assuming that that X is a number system
supporting addition and subtraction; X = Z or R would be standard
examples.) By convention, we set ∆0 = idXN , and for k ≥ 1 we set

∆k[a] = ∆(∆k−1[a]).

The function ∆k is called the k-th difference operator. For instance, Note that (∆k)∞
k=0 is a recursively

defined sequence of operators on
sequences!∆2[a]n = ∆[a]n+1 − ∆[a]n

= (an+2 − an+1)− (an+1 − an)

= an+2 − 2an+1 + an.

From here on we will assume that X is a number system with
addition, subtraction, and multiplication satisfying the usual axioms:
addition and multiplication are commutative and associative, and
multiplication distributes over addition. The reader will suffer no Up to rigorous interpretation, this

makes X a commutative ring.harm in assuming that X = Z or R, and these will always be our
sources of examples.
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Given x ∈ X and sequences a, b ∈ XN we may form new sequences
xa and a + b defined by

xa : n 7−→ x · an

a + b : n 7−→ an + bn.

We can also combine these operations and get the sequence

a + xb : n 7−→ an + x · bn.

Proposition 84. The k-th difference operator is linear (or X-linear) in the
sense that for all x ∈ X and a, b ∈ XN,

∆k[a + xb] = ∆k[a] + x∆k[b].

Proof. We check this for k = 1. The general case follows by induction
and the definition of ∆k. Now compute

∆[a + xb]n = [a + xb]n+1 − [a + xb]n
= (an+1 + xbn+1)− (an + xbn)

= (an+1 − an) + x(bn+1 − bn)

= ∆[a]n + x∆[b]n.

We will combine linearity with the following lemma to analyze
the effect of the difference operator on sequences with polynomial
formulæ.

Lemma 85. Fix an integer d ≥ 1. Let a = (nd)∞
n=0. Then ∆[a] is a

polynomial of degree d− 1. A polynomial is an expression of the
form cdxd + cd−1xd−1 + · · · + c0. If
cd 6= 0, we say that this polynomial has
degree d and call cdxd the leading term of
the polynomial.

Proof. We have
∆[a]n = (n + 1)d − nd

=
d

∑
k=0

(
d
k

)
nk − nd

=
d−1

∑
k=0

(
d
k

)
nk.

The leading term of this polynomial is ( d
d−1)n

d−1 = dnd−1, so ∆[a] is
indeed a polynomial of degree d− 1.

Proposition 86. If a sequence a satisfies an = p(n) for some polynomial
p of degree d, then ∆[a] is a polynomial of degree d− 1. Furthermore,
∆d[a] is a constant sequence.

Proof. Since p is a polynomial of degree d, we know that

p(x) = cdxd + cd−1xd−1 + · · ·+ c1x + c0.
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By Proposition 84, we know that

∆[a] = cd∆[nd] + cd−1∆[nd−1] + · · ·+ c1∆[n] + c0∆[1].

For r ≥ 1, we have that ∆[nr] is a polynomial of degree r − 1 by
Lemma 85. Moreover, ∆[1] = 0. Thus ∆[a] is a polynomial of degree
d− 1.

Since the degree decreases by 1 with each application of ∆, we learn
that ∆d[an] is a degree 0 polynomial, i.e., a constant sequence.

Delightfully, a converse to Proposition 86 holds as well, but we will
need two lemmas before proceeding.

Lemma 87. Suppose that a, b ∈ XN are sequences such that

∆[a] = ∆[b].

Then there exists a constant c such that From the proof, we will see that c =
a0 − b0.

an = bn + c

for all n ∈N.

Proof. By hypothesis, we have an+1 − an = bn+1 − bn, whence

an+1 − bn+1 = an − bn

for all n. Let c = a0 − b0. Then, by induction, c = an − bn for all n. The
result follows.

We also need to know how ∆ interacts with binomial coefficients.

Lemma 88. Fix k ∈N and set a = ((n
k))

∞
n=0. Then

∆[a]n =

(
n

k− 1

)
.

Proof. We compute

∆[a]n =

(
n + 1

k

)
−
(

n
k

)
=

(
n

k− 1

)
by Pascal’s identity.

Theorem 89 was first proven in Isaac
Newton’s 1687 treatise Philosophiæ

Naturalis Principia Mathematica.

Theorem 89. A sequence a ∈ XN is given by a degree d polynomial if and
only if ∆d[a] is a nonzero constant sequence. In this scenario,

an =
d

∑
k=0

∆k[a]0

(
n
k

)
.
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Proof. We have already seen the forward direction of this implication.
We prove the reverse direction by induction on d. If ∆0[a] = c 6= 0,
then an = c is constant, which is a degree 0 polynomial agreeing with
the given formula. Now fix d ≥ 0 and suppose the result holds for this
d. Suppose that a is a sequence such that

∆d+1[a]n = c 6= 0

for all n ∈ N. Then ∆d[∆[a]] is nonzero and constant, so the inductive
hypothesis implies that ∆[a] is given by the degree d polynomial

∆[a]n =
d

∑
k=0

∆k[∆[a]]0

(
n
k

)
=

d

∑
k=0

∆k+1[a]0

(
n
k

)
.

Now let p be the degree d + 1 polynomial Here we are thinking of (x
k) as the

degree k polynomial x(x−1)···(x−k+1)
k! .

p(x) =
d+1

∑
k=0

∆k[a]0

(
x
k

)
.

Using the linearity of ∆ (Proposition 84) and Lemma 88, we see that

∆[p]n =
d+1

∑
k=0

∆k[a]0

(
n

k− 1

)

=
d

∑
`=0

∆`+1[a]0

(
n
`

)
where the last equality follow from the substitution ` = k− 1 and the
fact that ( n

−1) = 0.
At this point, we know that

∆[a] = ∆[p].

Lemma 87 implies that a and p differ by the constant a0 − p(0). The
only term contributing to p(0) is ∆0[a]0(0

0) = a0, so in fact an = p(n) as
desired.

The upshot here is that when ∆d[a] is constant, we can find a poly-
nomial expression for a by computing the 0-th terms of k-th differ-
ences of a, k = 0, 1, . . . , d. Let’s apply this method when

an =
n

∑
k=0

k2

is the sum of the first n consecutive squares. Then

∆[a]n =
n+1

∑
k=0

k2 −
n

∑
k=0

k2 = (n + 1)2.

This is a quadratic (degree 2) polynomial, so ∆3[a] is constant by
Proposition 86. We need to compute ∆k(a0) for k = 0, 1, 2, 3:
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an 0 1 5 14 30 55 · · ·
∆[a]n 1 4 9 16 25 · · ·
∆2[a]n 3 5 7 9 · · ·
∆3[a]n 2 2 2 · · ·

(Note that we did a little extra labor here so that the reader would not
feel bamboozled. Knowing already that ∆3[a] is constant, we could
have stopped the first row at a3 = 14.)

By Theorem 89, we conclude that

an = 0 ·
(

n
0

)
+ 1 ·

(
n
1

)
+ 3 ·

(
n
2

)
+ 2 ·

(
n
3

)
.

Simplifying, this becomes

an = n +
3
2

n(n− 1) +
1
3

n(n− 1)(n− 2)

=
n(n + 1)(2n + 1)

6
.

Exercise 90. Explain what is happening in the following pictorial
derivation of ∑n

k=1 k2:

Exercise 91. Fix r ≥ 0. Use Theorem 89 to prove that the sequence with
n-th term

n

∑
k=0

kr

is expressible as a polynomial of degree r + 1. Find said polynomial for
r = 3, 4, 5. (You should already know the answer for r = 0, 1, 2.)

Exercise 92. Show that the Fibonacci sequence does not have constant
d-th difference for any d, and conclude that Fn is not expressible as a
polynomial.
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We conclude with a brief corollary on numerical polynomials. A
polynomial p is called numerical if p(n) ∈ Z for all n ∈ Z. Naturally,
this is the case for every polynomial with integer coefficients, but
there are interesting polynomials with non-integer coefficients that
still send integers to integers. Indeed, 1

2 n2 − 1
2 n = n(n− 1)/2 ∈ Z

for all n ∈ Z because every integer is either even or odd. Of course,
n(n− 1)/2 = (n

2), and it is more generally the case that the polynomial(
x
k

)
=

x(x− 1) · · · (x− k + 1)
k!

is numerical for all k ∈ N. Theorem 89 allows us to conclude that,
in a particular sense, the polynomials (x

k) generate all numerical
polynomials.

Corollary 93. A polynomial is numerical if and only if it can be
expressed as

d

∑
k=0

ck

(
x
k

)
for some d ≥ 0 and c0, . . . , cd ∈ Z. Moreover, every numerical
polynomial has a unique expression of this form.

Proof. The backwards implication is straightforward: since each (x
k) is

numerical, it is clear that Z-linear combinations of these polynomials
are numerical.

Now suppose that p is a numerical polynomial of degree d. By
Theorem 89, we know that

p(n) =
d

∑
k=0

∆k[p]0

(
n
k

)

for all n ∈ N. This implies that p(x) = ∑d
k=0 ∆k[p]0(x

k) as a polyno-
mial.21 Since the sequence (p(n))∞

n=0 is a sequence of integers, we 21 It is a general fact that d + 1 values
determine a degree d polynomial.
Indeed, if f and g are degree d polyno-
mials agreeing at inputs x0, . . . , xd, then
( f − g)(xi) = 0 for i = 0, . . . , d. It follows
that x− xi divides f − g for i = 0, . . . , d.
Clearly f − g has degree at most d, and
the only way such a polynomial can
have d + 1 linear factors is if it is the zero
polynomial. Thus f = g.

know that each ∆k[p]0 is an integer, so we have successfully expressed
p in the desired form. We leave uniqueness of the expression as an
exercise for the reader.

Corollary 94. A degree d polynomial p is numerical if and only if

p(0), p(1), . . . , p(d) ∈ Z.

Proof. The forwards implication is easy. For the backwards implica-
tion, observe that the coefficients ∆k[p]0 are integer linear combina-
tions of p(0), p(1), . . . , p(d) and invoke Theorem 89.
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Introduction to generating functions

The theory of generating functions is one of the most important tools
in combinatorics. We will get a glimpse of its magic in this section
as we find a closed form for the Fibonacci numbers. The interested
reader is encouraged to consult Generatingfunctionology, by H. Wilf
(Wilf [1994]).

(Double-click the image for access to the
online text.)

The (ordinary) generating function for a sequence a0, a1, . . . is the
formal power series

p(x) = ∑
n≥0

anxn = a0 + a1x + a2x2 + a3x3 + · · · .

The word “formal” here indicates that we are not interested in evalu-
ating p(x) at any point x.22 As Wilf states at the beginning of the book 22 The algebraic side of the theory

of generating functions, which we
pursue here, is not concerned with
questions of convergence. However,
there is an important analytic side in
which convergence behavior yields
information concerning asymptotic
properties of the sequence.

cited above, the generating function is just a “clothesline on which we
hang up a sequence of numbers for display”. It might seem that no
advantage is gained by encoding the sequence in this way—but read
on.

Let [xn]p(x) be notation for the coefficient of xn in p(x). Thus,
with p(x) as above, [xn]p(x) := an. By definition, two generating
functions p(x) and q(x) are equal if they have the same coefficients:
[xn]p(x) = [xn]q(x) for all n ≥ 0. We add and multiply generat-
ing functions as if they are polynomials. Given p(x) = ∑n≥0 anxn

and q(x) = ∑n≥0 bnxn, define their sum by

[xn](p(x) + q(x)) := [xn]p(x) + [xn]q(x).

In longhand:

p(x) + q(x) = (a0 + a1x + a2x2 + · · · ) + (b0 + b1x + b2x2 + · · · )
= (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + · · · .

We are able to define the product of two generating functions because,
even though each has infinitely many terms, the computation of the
coefficient for any particular term in the product is a finite process:
to find the coefficient of xn, we only need to consider the coefficients
of 1, x, x2, . . . , xn in both factors. The product of p(x) and q(x) is de-
fined by The formula a0bn + a1bn−1 + · · ·+ anb0,

itself, vaguely hints at a connection to
the additive and multiplicative counting
principles.

A polynomial is a generating function
with finitely many nonzero terms. For
instance,

(x + 1)4 = 1 + 4x + 6x2 + 4x3 + x4

is the generating function for the
sequence ak = (4

k).

[xn](p(x)q(x)) :=
n

∑
k=0

akbn−k.

Therefore,

p(x)q(x) = (a0 + a1x + a2x2 + · · · )(b0 + b1x + b2x2 + · · · )
= (a0b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · · .

To understand the formula, pretend the two factors on the first dis-
played line are polynomials and imagine computing the coefficients

https://www.math.upenn.edu/~wilf/gfologyLinked2.pdf
https://www.math.upenn.edu/~wilf/gfologyLinked2.pdf
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of the product in order: What is the constant term? What is coefficient
of x? Of x2? Etc.

The algebraic structure we have just imposed on the set of gen-
erating functions has many of the properties one would expect. For
instance, addition and multiplication are commutative and associa-
tive, and multiplication distributes over addition. The multiplicative
inverse of a generating function p(x) is a generating function q(x) such
that p(x)q(x) = 1. In this case we write 1/p(x) := q(x). So in the
world of formal power series, 1/p(x) is nothing more than notation
for “the generating function whose product with p(x) is 1”.

Example 95. The constant sequence 1, 1, 1, . . . has generating function

c(x) = 1 + x + x2 + x3 + · · · .

We have

(1− x)c(x) = c(x)− xc(x)

= (1 + x + x2 + x3 + · · · )− x(1 + x + x2 + x3 + · · · )
= (1 + x + x2 + x3 + · · · )− (x + x2 + x3 + x4 + · · · )
= 1.

Since the product of 1− x with c(x) is 1,

1
1− x

= 1 + x + x2 + x3 + · · · .

Exercise 96. Modify Example 95 to show that for all a > 0,

1
1− ax

= ∑
n≥0

anxn = 1 + ax + a2x2 + a3x3 + · · · .

Thus, 1/(1− ax) is the generating function for the series 1, a, a2, a3, . . .
The special case is a = −1 gives

1
1 + x

= 1− x + x2 − x3 + · · · .

Exercise 97. In fact, a generating function has a multiplicative in-
verse if and only if its constant term is nonzero. To get an idea of
how one would prove this, consider the generating function for the
sequence 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, . . . whose terms are the digits of π:

p(x) = 3 + x + 4x2 + x3 + 5x4 + · · · .

To find 1/p(x), we need to find constants a0, a1, . . . such that

(a0 + a1x+ a2x2 + a3x3 + · · · )(3+ x+ 4x2 + x3 + 5x4 + · · · ) = 1 = 1+ 0 · x+ 0 · x2 + 0 · x3 + · · · .

The coefficients of the generating function on the righthand side
are 1, 0, 0, . . . , and these must equal the coefficients of the product on
the lefthand side. Computing the latter allows us to compute the ai

one step at a time. Find the first few.
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Generating function for the Fibonacci sequence

Recall the recursive definition for the Fibonacci sequence:

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Our goal is to compute a closed form23 for the generating function of 23 To write a generating function in closed
form means to write it as a rational func-
tion, i.e., as the quotient of polynomials.
For instance 1 + x + x2 + x3 + · · · has
the closed form 1/(1− x).

the Fibonacci sequence,

F(x) = ∑
n≥0

Fn xn = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 · · · .

and use it to find a formula for Fn as a function of n that does not rely
upon recursion.

Consider the equations

F(x) = x + x2 + 2x3 + 3x4 + 5x5 + · · · + Fnxn + · · · ,
xF(x) = + x2 + x3 + 2x4 + 3x5 + · · · + Fn−1xn + · · · ,

x2F(x) = + + x3 + x4 + 2x5 + · · · + Fn−2xn + · · · .

Add the last two and use the recursion formula for Fibonacci numbers
to get

xF(x) + x2F(x) = F(x)− x.

Solving for F(x), gives the elegant closed form

F(x) =
x

1− x− x2 . (98)

Now for the surprise: after working so hard to find a closed form, we
are going to expand that form into a power series again, but not by
simply reversing our steps. Define

φ :=
1 +
√

5
2

and φ :=
1−
√

5
2

.

Then one may check that φ + φ = 1 and φφ = −1 so that

The number φ is known as the golden
ratio.

1− x− x2 = (1− φx)(1− φx).

Rewriting Equation 98 and using partial fractions gives

F(x) =
x

(1− φx)(1− φx)

=
1√
5

(
1

1− φx
− 1

1− φx

)
.

Now use Exercise 96 to expand 1/(1− φx) and 1/(1− φx) as power

It is easy to check that for a 6= b,

x
(1− ax)(1− bx)

=
1

a− b

(
1

1− ax
− 1

1− bx

)
.

series:

F(x) =
1√
5

(
1

1− φx
− 1

1− φx

)
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=
1√
5

((
1 + φx + φ2x2 + φ3x3 + · · ·

)
−
(

1 + φx + φ
2x2 + φ

3x3 + · · ·
))

=
1√
5
(φ− φ)x + (φ2 − φ

2
)x2 + (φ3 − φ

3
)x3 + · · · .

Since F(x) equals the above power series, their coefficients must be
equal: for all n ≥ 0,

Fn =
1√
5

(
φn − φ

n
)
=

1√
5

((
1 +
√

5
2

)n

−
(

1−
√

5
2

) n)
. (99)

Example 100. We have

φ7 = 29.0344418537486 . . .

φ
7
= −0.0344418537486 . . .

and

1√
5

(
φ7 − φ

7
)
=

1√
5
(29.0688837074973 . . . ) = 13 = F7.

Exercise 101.

(i) What happens to φ
n as n gets large? As n ranges over non-

negative integers, what is the maximal value of φ
n? Show

that φ
n/
√

5 < 1/2 for all n ≥ 0.
(ii) Use Equation 99 to show that Fn is the closest integer to 1√

5
(φn −

φ
n
).

(iii) Show that

lim
n→∞

Fn+1

Fn
= φ,

i.e., as we go out in the Fibonacci sequence, the quotient of
successive terms gets arbitrarily close to the golden ratio.
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P R O B L E M S

Please read the Mathematical Writing section in the Appendix before
writing up your solutions! For instance: you will only receive full
credit if you provide full explanations. Also, your solutions should
consist solely of complete sentences. Simply providing the correct
numerical solution does not suffice.

1. As a fan of the Lord of the Ring trilogy of movies, you decide to
watch them in every possible order.

(i) In how many orders can you watch the three movies?
(ii) If you watch one of the movies each night, what is the least

number of nights you would need to see them in every possi-
ble order?

2. A binary necklace is a collection of blue and yellow beads strung
along a circle. We count to necklaces as being the same if one
can be obtained from the other by sliding the beads. Thus, the
two necklaces in Figure 18 are the same. However, when you
are comparing necklaces to see if they are the same, you are not
allowed to flip them over.

=

Figure 18: Two views of the same
necklace.

(i) For n = 0, 1, 2, 3, 4, count the number of binary necklaces
with n blue beads and n + 1 yellow beads.

(ii) When you are satisfied with your answers, go to the Online
Encyclopedia of Integer Sequences (oeis.org) and search
for your sequence.

3. You have nine math books. Five of them are yellow Springer-
Verlag texts and four are gray Cambridge University Press texts.

(i) How many ways are there to arrange the books, left to right,
along a shelf?

(ii) What if the yellow books need to stay together (but their
ordering is still important)?

(iii) What if, in addition, the gray books need to stay together
(and ordering within each color group is important)?

4. A domino is a list of two, not necessarily distinct, numbers a, b
where each of a and b are between 0 and 6, inclusive. We consider
the pairs a, b and b, a to be the same.

(i) How many dominoes are there?
(ii) Say two dominoes match if they share at least one number.

Thus, a matching pair will have the form

[a|b] [b|c]

http://oeis.org/
http://oeis.org/
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where a, b, c are numbers between 0 and 6, inclusive. How
many pairs of matching dominoes are there (where the order
of the pair of dominoes does not count)? [Hints: A double is
a domino with a repeated number, e.g., [4|4]. Why can’t a
matching pair consist of two doubles? Break the problem into
two cases depending on whether a double occurs.]

5. (i) You are in an imaginary country in which coins come in
denominations of 1, 2, . . . , 7 cents. In how many different
ways can you pay for an item that costs 7 cents?

(ii) The next country you visit has only 5 and 11 cent coins. Thus,
for instance, there is no way to create change for 13 cents.
Consider all the (nonnegative integer) amounts that cannot
be formed from collections of these coins. Is this set finite or
infinite? If it is finite, what is its largest element? To read more about this fascinating

problem, see the Wikipedia page on
the coin problem. Spoiler alert: the
article contains a solution to Challenge
Problem (ii).

6. *

(i) In Problem 3, what if the only restriction is that the colors
appear in a symmetrical pattern about the central book?
[Hint: Let g stand for gray and y for yellow. Suppose the first
four books have the color pattern ggyy. What is the rest of the
pattern? How many arrangements have this color pattern?
How many possible color patterns are there for the first four
books?]

(ii) In Problem 5, what if the denominations are a and b instead
of 5 and 11? Can you come up with a formula for the largest
amount that cannot be formed from these coins?

7. Consider the following sets:

A = {x ∈ Z | x2 ∈N},
B = {x ∈N | x is even} ∩ {x ∈N | x is a multiple of 3},
C = {x ∈N | x is even} ∪ {x ∈N | x is a multiple of 3},
D = {x ∈N | x is even}4 {x ∈N | x is a multiple of 3}.

Write out some elements of each set and then describe the set in
words, justifying your answer.

8. Suppose that A and B are finite sets with |A| = m, |B| = n, and
m ≤ n. What are the smallest and largest possible values of |A ∩ B|?

9. Recall that De Morgan’s law states that for all sets A, B, C,

C r (A ∪ B) = (C r A) ∩ (C r B)

and
C r (A ∩ B) = (C r A) ∪ (C r B).

https://en.wikipedia.org/wiki/Coin_problem
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(i) Draw Venn diagrams that express these identities.
(ii) Prove the first identity.

In order to prove an equality of sets
X = Y, you can show X ⊆ Y and Y ⊆ X.

10. Explain how the following pictures illustrate the indicated identi-
ties, and then prove one or both of them.

A× (B ∩ C) = (A× B) ∩ (A× C) (A ∩ B)× (C ∩ D) = (A× C) ∩ (B× D)

11. How many words can you make by rearranging the letters of the
word susurrus if you do not care whether the words make sense?

12. To form a password, you can either form as sequence of six digits
from {0, 1, . . . , 9} or a sequence of four letters from {a, . . . , z}.

(i) How many possible passwords are there if no number or
letter can be repeated?

(ii) How many if repetitions are allowed?

13. You are constructing a nine-layer ice cream cake and go to Cloud
City Ice Cream to pick out the flavors. You decide on the following:

three layers of Dark Chocolate Salted Caramel
one layer of Caramelized Banana
two layers of Earl Grey Blueberry
one layer of Honey Lavender
two layers of Oregon Strawberry.

How many choices do you have for the arrangement of the layers?

14. Five couples go to the theater and sit in the first row, which conve-
niently has exactly ten seats. How many ways can these people be
seated if couples must sit together?

15. * How many ways are there to choose an ordered pair of sub-
sets (A, B) from {0, 1, · · · , 9} such that |A ∩ B| = 1?
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16. Define a function f : N→ Z by the piecewise formula

f (n) =

 n
2 if n is even,
−1−n

2 if n is odd.

Show that f is a bijection, preferably by finding a two-sided inverse
to f .

17. Consider the function g : Z→ Z given by

g(n) =

 n
2 if n is even,
n+1

2 if n is odd.

Determine whether or not g is injective, and whether or not g is
surjective.

18. Suppose A and B are sets and that f : A → B is a function. We
define new functions

f∗ : 2A −→ 2B

X 7−→ f∗(X) = { f (x) | x ∈ X}

and
f ∗ : 2B −→ 2A

Y 7−→ f ∗(Y) = {x ∈ A | f (x) ∈ Y}.

We call f∗(X) the image of X along f , and f ∗(Y) the preimage of Y
along f .

Many authors write f (X) for f∗(X) and
f−1(Y) for f ∗(Y). This overloading of
notation is harmless once one is used
to images and preimages, but we have
chosen a more precise notation for this
first encounter.

(a) Draw cartoons illustrating what the image and preimage
functions do.

(b) Express surjectivity of f in terms of f∗. Separately, express
surjectivity of f in terms of f ∗. What about injectivity of f ?

(c) For f : A → B, X1, X2 ∈ 2A, and Y1, Y2 ∈ 2B, prove all or some
of the following statements:

f∗(X1 ∪ X2) = f∗(X1) ∪ f∗(X2),

f∗(X1 ∩ X2) ⊆ f∗(X1) ∩ f∗(X2),

f ∗(Y1 ∪Y2) = f ∗(Y1) ∪ f ∗(Y2), and

f ∗(Y1 ∩Y2) = f ∗(Y1) ∩ f ∗(Y2).

(d) Find an example to show that equality does not necessarily
hold in the second line of (c).

This is an example of an adjunction —
something to keep an eye out for if you
ever encounter category theory.

(e) Show that for every function f : A → B and subsets X ∈ 2A,
Y ∈ 2B, we have

f∗(X) ⊆ Y if and only if X ⊆ f ∗(Y).



73

19. Suppose k, n ∈N with k ≤ n. Give two proofs that(
n
k

)
=

(
n

n− k

)
.

The first proof should be algebraic, using the defining formulas.
The second should explain why both sides of the equality count the
same thing.

20. Let a, b ∈ N. Prove that the number of NE lattice paths from (0, 0)
to (a, b) is (

a + b
a

)
=

(
a + b

b

)
.

21. Show that there are 1, 098, 240 one-pair poker hands.

22. Ten ants are dropped in random positions on a meter-long stick.
Some of these ants are initially traveling to the left and some are
traveling to the right, but all travel at one meter/minute. When
two ants meet, they bounce off of each other and change their
directions (instantaneously). When an ant reaches the end of the
stick, it walks off, never to return. What is the maximal amount of
time (over all possible initial conditions) before the stick to be ant
free? Characterize all initial conditions that achieve this maximal
time. (If you have seen this problem before, do not spoil it for
others in your group!)

23. Consider the following relations on the set R of real numbers:
inequality ( 6=), strictly greater than (>), and less than or equal
to (≤). Determine what (if any) of the three properties of and
equivalence relation — reflexive, symmetric, transitive — these
relations have.

24. Consider the relation ∼ on R such that x ∼ y if and only if x − y
is an integer. Prove that ∼ is an equivalence relation. What does a
generic element of R/∼ look like?

Recall that for ' an equivalence relation
on set X, X/' is the set of equivalence
classes for '.

25. Consider the relation ∼ on R such that x ∼ y if and only if x − y
is an integer. Prove that ∼ is an equivalence relation. What does a
generic element of R/∼ look like?

Recall that for ' an equivalence relation
on set X, X/' is the set of equivalence
classes for '.

26. Interpret and solve the following question using the language of
equivalence classes:

QUESTION : A total of n Americans and n Russians attend a meeting
and sit around a round table. If Americans and Russians alternate
seats, in how many ways may they be seated up to rotation?

27. We place two red and two black checkers on the corners of a square.
Say that two configurations are equivalent if one can be rotated
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to the other. Check that this is an equivalence relation, and write
down its equivalence classes. Can the number of equivalence
classes be found by dividing 6 (the number of words with exactly
two R’s and two B’s) by some natural number?

28. In the notation of Problem 25, does R/∼ have a natural “shape”?

29. The book claims that

n

∑
`=k

(
`

k

)
=

(
n + 1
k + 1

)
for all k, n ∈ Z.

(i) Highlight the terms involved in this identity for various k and
n on Pascal’s triangle; explain why it is known as the hockey
stick identity.

(ii) Let X be the set of subsets of [n + 1] of cardinality k + 1, and
let

Xa := {A ∈ X | a is the first element of [n + 1] in A}

for a = 1, 2, . . . , n− k. Check that

X = X1 q X2 q · · · q Xn−k+1.
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(iii) Determine the cardinality of Xa in terms of n, k, and a. Use
this and (ii) to give a combinatorial proof of the hockey stick
identity.

30. (i) Compute the sums (
0
0

)2

(
1
0

)2
+

(
1
1

)2

(
2
0

)2
+

(
2
1

)2
+

(
2
2

)2

(
3
0

)2
+

(
3
1

)2
+

(
3
2

)2
+

(
3
3

)2

(
4
0

)2
+

(
4
1

)2
+

(
4
2

)2
+

(
4
3

)2
+

(
4
4

)2

(
5
0

)2
+

(
5
1

)2
+

(
5
2

)2
+

(
5
3

)2
+

(
5
4

)2
+

(
5
5

)2

by hand and develop a conjecture regarding the value of(
n
0

)2
+

(
n
1

)2
+

(
n
2

)2
+ · · ·+

(
n

n− 1

)2
+

(
n
n

)2
.

(ii) Use the binomial theorem to prove your conjecture. [Hint:
Consider the coefficient of xn in (1 + x)2n = (1 + x)n(1 + x)n.]

(iii) Give a combinatorial argument proving your conjecture.
[Hint: Split a set of size 2n into two pieces of size n, and then
start building size n subsets of the original set.]

31. * How many ways are there to write a nonnegative integer m
as a sum of r positive integer summands? (We decree that the
order of the addends matters, so 3 + 1 and 1 + 3 are two different
representations of 4 as a sum of 2 nonnegative integers.) Develop a
conjecture and prove it.
What if we allow nonnegative integer summands rather than posi-
tive integer summands?

32. Use induction to show that

20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1

for n ≥ 1. Write a complete proof using the template from our text
as a guide.

33. Use induction to prove that the number of diagonals in a convex
n-gon is n(n− 3)/2 for n ≥ 3.

Figure 19: A hexagon has 6(6−3)
2 = 9

diagonals.
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34. Using induction, we can prove that in every gathering of Reed
students, all the students have the same hair color.
We induct on the size of the set of students in the gathering. The
base case of n = 1 is clear. So assume the result holds for every
set of Reed students of size n ≥ 1. Let X be a set of Reed students
of size n + 1. Choose a student A ∈ X. Removing that student
from X produces the set X \ {A} of size n. By induction, all of these
students have the same hair color H1. Now remove a different
student B from X. By induction, again, all the students in X \ {B}
have the same hair color H2. Notice that A ∈ X \ B, and therefore
has hair color H2. Similarly, B has hair color H1. Now for the
interesting part: Let C ∈ X be a student who has not been chosen,
yet. Since C ∈ X \ A, we know C’s hair color is H1. Similarly,
since C ∈ X \ B, we know C’s hair color is H2. It follows that H1 =

H2. We have accounted for every student in X and shown they
have the same hair color. The result now follows by induction.
What, precisely, is wrong with this argument?

35. There are ten pirates on a ship—conveniently named One through
Ten—and they decide to use an ancient pirate method to divvy
up their booty of 100 gold doubloons. Pirate One will propose
a distribution and all pirates will vote. If half or more vote aye,
the distribution is accepted. If not, the distribution is rejected and
Pirate One is sent to Davy Jones’ locker. There would then be nine
pirates left, and the method continues with Pirate Two taking One’s
place. If Two is also forced to walk the plank, then there will be
eight pirates left, and it’s Pirate Three’s turn, and so on. You are
Pirate One. What do you propose?

Figure 20: Blackbeard the Pirate: this
was published in Defoe, Daniel; John-
son, Charles (1736) "Capt. Teach alias
Black-Beard" in A General History of
the Lives and Adventures of the Most
Famous Highwaymen, Murderers,
Street-Robbers, &c. to which is added,
a genuine account of the voyages and
plunders of the most notorious pyrates.
Interspersed with several diverting
tales, and pleasant songs. And adorned
with the Heads of the most remarkable
Villains, curiously engraven on Copper,
London: Oliver Payne, pp. plate facing
p. 86 [Wikimedia Commons].

36. In this problem we consider monotonic paths (those made from
single right and single up steps) on the integer lattice starting from
(0, 0).

Examples of monotonic paths from (0, 0) to (3, 2).

Suppose you want to take a monotonic path from (0, 0) to (4, 5)
and then to (8, 20). How many different such paths can you take?

37. How many five-card poker hands are there that are either a straight
(five denominations in a row with no regard to suit) or a flush (all
cards have the same suit)? An ace can count as either high or low
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in a straight, e.g., 10-J-Q-K-A or A-2-3-4-5, but a straight cannot
wrap around, e.g., Q-K-A-2-3. (A formula from earlier homework
for |A ∪ B|might be useful.)

38. Color this copy of Pascal’s triangle so that each odd entry is shaded.
Find and prove any patterns that you observe. For instance,

(i) which rows are completely shaded?
(ii) how many entries are shaded in the n-th row?

(Remember to use the convention that the (n
k) row is the n-th row.)

39. Consider the following numbers

110 = 1

111 = 11

112 = 121

113 = 1331

114 = 14641

115 = 161051

116 = 1771561

and compare them to the rows of Pascal’s triangle. Precisely de-
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scribe the pattern you see, and explain why it happens. What is
the relationship between 101n and Pascal’s triangle? What about
1001n?

40. Generate the table of harmonic differences by making 1/1, 1/2,
1/3, 1/4, . . . the first row, and in each subsequent row record the
differences of the adjacent numbers:

1
1

1
2

1
3

1
4

1
5

1
6 · · ·

1
2

1
6

1
12

1
20

1
30 · · ·

1
3

1
12

1
30

1
60 · · ·

1
4

1
20

1
60 · · ·

1
5

1
30 · · ·

1
6 · · · .

Rotate the table so that 1
1 is on top and the next row is 1

2
1
2 , then

1
3

1
6

1
3 , etc. Then multiply the first row by 1, the second by 2, the

third by 3, etc. What is the relationship between this new table and
Pascal’s triangle? Prove it.

41. How many poker hands (5 cards) from a regular deck (52 cards)
have at least one card from each of the four standard suits? Hint:
Let N♠ be the collection of hands containing no spades, and simi-
larly define N♣, N♥, and N♦. What is the relationship between the
answer to this question and |N♠ ∪ N♣ ∪ N♥ ∪ N♦|?

42. Recall that Dm denote the number of derangements of [m]. How
many derangements π of [n] have π(1) = 2 and π(2) = 1? Fix
some k such that 2 ≤ k ≤ n; how many derangements π of [n] have
π(1) = k and π(k) = 1?

43. How many derangements π of [n] have π(1) = 2 and π(2) 6= 1?
Fix some k such that 2 ≤ k ≤ n; how many derangements π of [n]
have π(1) = k and π(k) 6= 1?

44. Let Dn be the number of derangements of [n]. Use your answers
to Problems 2 and 3 to find a formula for Dn in terms of Dn−1 and
Dn−2. Determine D1 and D2 by hand and then use your formula to
determine Dn for n = 3, 4, 5, and 6; check that your answers match
with the closed formula given in the text.

45. In a round robin chess tournament with n participants, every
player plays every other player exactly once. Prove that at any
given time during the tournament, two players have finished the
same number of games.

Hints:
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(i) What is the minimum m and maximum M number of games
that a player has played at any point in the tournament?

(ii) Suppose that at some point, a player has played M games.
What is the minimum and maximum number of games that
the other players have played at that point?

(iii) What if at some point no player has played M games? What
is the minimum and maximum number of games that any of
the players has played?

46. What is the least number of area codes needed to guarantee that
the 25 million phones in a state can be given distinct 10-digit
telephone numbers of the form NXX-NXX-XXXX where each X
is any digit from 0 to 9 and each N represents a digit from 2 to 9?
(The area code is the first three digits.)

47. Show that in the sequence 7, 77, 777, 7777, . . . there is an integer
divisible by 2003.

Hints:

(i) Let ai and aj be in the sequence with ai > aj. Show that ai −
aj = ak10r for some natural number r. Use this fact to show
that if 2003 divides ai − aj, then it divides ak.

(ii) How many possible remainders does ai − aj have upon
division by 2003?

48. Suppose that a ∈ RN is a polynomial sequence of degree 4. Use the
following table of differences to determine a formula for an.

an 0 0 4 12 72 · · ·
∆[a]n 0 4 8 60 · · ·
∆2[a]n 4 4 52 · · ·
∆3[a]n 0 48 · · ·
∆4[a]n 48 · · ·

49. With your group, choose a “random” polynomial p of degree at
most 5. Prepare a table of the values p(n) for n = 0, 1, . . . , 6. Swap
tables of values with another group and then reconstruct each
others polynomials.

50. (i) For r, n ≥ 0 define ar,n = ∑n
k=0 kr. Prove that (ar,n)∞

n=0 is a
degree r + 1 polynomial sequence.

(ii) Use a table of differences to determine a polynomial expres-
sion for

a3,n =
n

∑
k=0

k3.
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51. Consider the sequence a0, a1, . . . defined by the recurrence

a0 = 0, a1 = 1, and an = 5an−1 − 6an−2 for n ≥ 2.

(i) Write out the terms of (an) until you get to 2059.
(ii) Check that for a 6= b,

x
(1− ax)(1− bx)

=
1

a− b

(
1

1− ax
− 1

1− bx

)
.

(iii) In the text, we used generating functions to find a closed
form for the Fibonacci numbers. Apply a similar procedure
to f (x) = a0 + a1x + · · ·+ anxn + · · · , the generating function
for (an), to find a closed form for (an).

52. Let f (x) = ∑∞
i=0 bixi be the generating function for the sequence b0, b1, . . . .

(i) Let g(x) = (1− x) f (x). Then (g(x)− b0)/x is the generating
function for which sequence?

(ii) Let h(x) = f (x)
1−x . Then h(x) is the generating function for

which sequence?
(iii) Apply the previous result to h(x) = 1/(1− x) to find the

sequence whose generating function is 1/(x− 1)2.
(iv) Find the sequence whose generating function has closed

form 1+x+x2

(1−x)2 by multiplying 1 + x + x2 by the series for 1/(1−
x)2.



Graph theory

Vertices, edges, and degree

We now turn our attention to mathematical objects used to study
networks.

Definition 102. A graph G = (V, E) consists of a set V of vertices and a
set E of edges. Each element of E has the form {u, v} where u and v are
distinct vertices. If e = {u, v} ∈ E, we say that e is incident on u and v
and that u and v are adjacent or that they are neighbors. NOTATION :
Instead of {u, v}, for an edge, we will often write uv.

v1

v2

v3

v4

vertices: V = {v1, v2, v3, v4}
edges: E = {v1v2, v1v4, v2v3, v2v4, v3v4}

The term “graph” is now overloaded for us. It can refer to the above
definition or to the notion we used earlier to define functions. Its
meaning in a particular context should be clear, though.

One important example of a graph is the internet, thought of as a
set of webpages (vertices) connected by links (edges). This suggests
a host of important problems in graph theory (which, sadly, we will
not cover) having to do with searching. Another example of a phe-
nomenon naturally modeled by a graph is a social network. Here, the
vertices are people and the edges are bonds of kinship, friendship, or
acquaintance. Thus, for instance, the study of graphs has relevance
in understanding the spread of disease. In general, graph theory has
applications in all of the natural and social sciences, it is a core concept
in computer sciences, and is used extensively within mathematics,
itself.

Rather than recording lists of vertices and edges, we will often
represent a graph graphically. The vertices become points or dots
on the page, and an edge uv is drawn as a line segment or curve
joining the dots for u and v. The shape of these pictures and incidence
between edges at non-vertices are visual artifacts that are not genuine
pieces of the structure of the graph.

The following are both representations of the same graph:
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v1 v2

v3v4

v1 v2

v3v4
.

How do we know? It is because two graphs are equal exactly when
they have the same sets of vertices and edges. In the above example,
both graphs have vertex set v1, v2, v3, v4 and edge set {v1v2, v2v3, v3v4, v1v4}.

What would you say about the graphs below? Are they equal?

v1 v2

v3v4

G1

v1 v3

v2v4

G2

a b

cd

G3

We have G1 6= G2 since, although they have the same vertex set, their
edge sets differ. For instance, v1v2 is an edge of G1 but not of G2. The
graph G3 differs from both of the others since its vertex set is different.
However, there is some sense in which these graphs are all essentially
the same since they only differ by a relabeling of vertices.

Definition 103. Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
if there exists a bijection of vertex sets f : V1 → V2 inducing a bijection
of edges sets, i.e., such that

E1 −→ E2

uv 7−→ f (u) f (v)

is a bijection. The mapping f is then called an isomorphism between G1

and G2. We say G2 is obtained from G1 by a relabeling of vertices
(determined by f ).

For example, an isomorphism between G1 and G2, pictured above,
is provided by the mapping v1 7→ v1, v2 7→ v3, v3 7→ v2, v4 7→ v4,
swapping v2 and v3. An isomorphism of G1 and G3 is obtained by
relabeling vertices according to, for example, v1 7→ a, v2 7→ b,
v3 7→ c, v4 7→ d.

Determining whether two graphs are isomorphic is a famous
problem in computer science. In practice, there are good algorithms,
but the exact complexity of the problem is not yet known.

Wikipedia link: Graph isomorphism
problem

Question 104. Are the graphs pictured below isomorphic?

https://en.wikipedia.org/wiki/Graph_isomorphism_problem
https://en.wikipedia.org/wiki/Graph_isomorphism_problem
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.

Note that the above question makes sense. One way to state it more
precisely would be to ask whether one can label the vertices of each
graph with the elements of the set V such that the identity mapping,
sending each v to itself, gives an isomorphism between the graphs.

We will often be more concerned about the incidence structure of
the edges and the vertices and not about the specific names we give
to vertices. To formalize this idea, we now develop the idea of an
“unlabeled” graph.

Question 105. Define a relation among graphs by G1 ∼ G2 if G1 is
isomorphic to G2. Use Definition 103 to prove that ∼ is an equivalence
relation.

Definition 106. An unlabeled graph is an isomorphism class of graphs,
i.e., an equivalence class under the relation ∼ defined above.

Figure 21: Six unlabeled graphs on four
vertices. There are eleven in all. Can you
find the rest?

Counting the number of (labeled) graphs is not hard (see Problem
1 at the end of this chapter), but counting unlabeled graphs is much
more difficult. Here is a table of the first few counts:

n 1 2 3 4 5 6 7 8
# 1 2 4 11 34 156 1044 12346

. . .

number of unlabeled graphs on n vertices

It is conjectured that there is no “nice” formula for the number of
unlabeled graphs [Pak, 2018, Conjecture 1.1].

THERE ARE SEVERAL VARIATIONS on graphs that will occasionally
be useful for us. For instance, a graph is sometimes allowed to have
loop edges in which both endpoints of an edge are the same vertex. A
multigraph is a graph where multiple edges between the same set of
vertices is allowed. A directed graph allows directions to be assigned
to edges. Formally, an edge is no longer a set {u, v} but an ordered
pair (u, v).

loop edge multigraph directed graph

Figure 22: Variations on graphs.

Unless otherwise stated, our graphs are assumed to be simple,
meaning no loops and no multiple edges. We also take our graphs to
be finite, meaning |V| and |E| are finite.

THE degree OF A VERTEX is the number of edges on which it is
incident. (In a graph with loops, a loop edge adds 2 to the degree of its
vertex.)
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Proposition 107. Let G = (V, E) be a graph. Then the sum of the
degrees of its vertices is twice the number of its edges:

∑
v∈V

deg(v) = 2|E|.

Proof. Consider an edge e = {u, v}. In the sum of the degrees, e is
counted exactly twice—it contributes to deg(u) and to deg(v).

v1

v2

v3

v4

∑4
i=1 deg(vi) = 2 + 3 + 2 + 3

= 10 = 2 · 5 = 2|E|.

Since 2|E| is even, we have an immediate corollary:

Corollary 108. The number of vertices with odd degree is even.

Problem 109. You attend a party at which there are 27 people, in-
cluding yourself. Prove that at least one person there knows an even
number of others. (Assume the relationship “knows” is symmetric.)



85

Paths and cycles

Königsberg, 1652, with bridges highlighted

The Prussian town of Königsberg (now Kaliningrad, Russia) was
divided by the Pregel River, and in the river were two islands. That
made for four landmasses which, in the 1700s, were connected by
seven bridges:

The question—now known as the Königsberg Bridge Problem—arose
as to whether it was possible to walk through the town, crossing each
bridge exactly once. (The understanding is that the only way one is
allowed to pass between landmasses is via a bridge.) The answer to
this question motivates this section. It is due to Euler and is one of the
earliest results in graph theory.

Leonhard Euler, 1707–83

[by Jakob Emanuel Handmann (1753)]

Before we present Euler’s solution, we need some generally-useful
terminology. The words we will use have colloquial meanings, but
be careful not to confuse those with their technical meanings defined
below.

Definition 110. Let G be a multigraph, i.e., a graph in which multi-
ple edges between vertices are allowed. A walk in G of length ` is a
list v0e1v1e2v2 . . . v`, such that ei = vivi+1 is a specific edge in G with
endpoints vi and vi+1 for each i. If G is simple, there is no need to
specify the edges, and we can use the notation v0v1 . . . v`, instead. To
specify the beginning vertex u = v0 and the ending vertex is v = v`,
we refer to a (u, v)-walk. A path is a walk with no repeated vertices
(and, hence, no repeated edges). A walk is closed if it begins and ends
at the same point (v0 = v`). A cycle is a closed walk with no repeated
vertices except for the first and last.

A walk using each edge exactly once is called Eulerian. A path or
cycle containing each vertex is called Hamiltonian.

Question 111. Consider the graph pictured in Figure 23.
a

b

c

d

e

Figure 23: Graph for Question Ques-
tion 111.

(i) Find a path of maximal length. (Recall: a path contains no re-
peated vertices.)

(ii) Find a cycle containing all of the vertices.
(iii) Find an Eulerian path from a to c.
(iv) Find a Hamiltonian cycle.
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Note that if a graph has a (u, v)-walk, then it has a (u, v)-path. To
see this, consider the list of vertices and edges constituting a (u, v)-
walk. Suppose some vertex w is repeated. In that case, eliminate the
sublist of vertices and edges occurring between the first and last oc-
currences of w in the walk but retaining one copy of the vertex w. The
result is a (u, v)-walk in which w is not repeated. Repeat, if necessary.

Definition 112. A subgraph of a graph G = (V, E) is a graph H =

(V′, E′) such that V′ ⊆ V and E′ ⊆ E. If W ⊆ V, the subgraph of G
induced by W is the subgraph of G with vertex set W, denoted G[W]

and with edge set consisting of all edges of G with endpoints in W.

Example 113. The following are subgraphs of the graph in Figure
Figure 23.

a
b

c

d
a

b

c

d

The first is not an induced subgraph since it is missing the edges bc
and bd. The second is the induced subgraph G[{a, b, c, d}].

It is not always possible to find a walk between a pair of vertices
in a graph. This happens when the graph appears as a set of discon-
nected pieces (cf. Figure 24. We need to make this notion precise.

Figure 24: A graph with three connected
components, one of which consists of a
single vertex.

Definition 114. Define an equivalence relation on the vertices of
a graph G by u ∼ v if there exists a walk from u to v. (Why is this
an equivalence relation?) A connected component of G is a subgraph
induced by an equivalence class for ∼. We say G is connected if it has
only one connected component; otherwise, G is disconnected.

We are now ready to tackle the Königsberg bridge problem. The
first step is to turn it into a question about graphs. The relevant graph
has nodes representing the four landmasses and edges representing
the seven bridges:

A

B

C

D

a
b

c
d

e

f

g
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Using the terminology developed above, the Königsberg bridge
problem asks us whether this graph has an Eulerian walk, i.e., a walk
that includes each edge exactly once. What if, in addition, we asked
for a closed Eulerian walk, i.e., that the walk begins and ends on the
same landmass? The following result shows that is impossible.

Theorem 115. Let G be a connected multigraph. Then G has a closed
Eulerian walk if and only if each of its vertices has even degree.

Proof. First assume that G has a closed Eulerian walk, and consider
a vertex v of G. Since the walk is Eulerian, each edge incident on v
is part of the walk. Further, going along the walk, each edge coming
into v is uniquely paired with an edge leaving v. (If v is the initial
vertex of the walk, then we consider the last edge of the walk as
paired with the first.) Thus, v has even degree.

Conversely, now assume that each vertex has even degree, and we
will construct a closed Eulerian walk. The first step of the procedure
is to start at any vertex, pick an incident edge to be part of the walk,
paint it blue, and walk along that edge to the next vertex. Repeat this
process as long as possible: At each stage of the construction, pick a
non-blue incident edge, add that edge to the walk, and travel along
it to the next vertex. Since the graph has only finitely many edges,
the procedure must eventually halt, at which point we may or we
may not have a closed Eulerian walk. Figure 25 gives an example of
one possible result of the procedure up to this point: start at a, then
walk to b and c, then back to a. We stop at this point since there are no
unused edges incident on a.

a

c

b
f

e

d

gh

Figure 25: The walk abca is the first step
in the construction of a closed Eulerian
walk. The arrows indicate the direction
of the walk.

Going back to the general procedure, let W be the walk we have
constructed so far (consisting of all the blue edges and their vertices).
We claim that, as in the example just considered, W is closed. Say u is
its starting vertex, and let v 6= u be any other vertex in W. It is possible
that v is reached multiple times in W. Imagine we are constructing the
walk W and are just about to choose an edge to paint blue and move
to v. We claim that, even if v has been reached before, at this point,
the number of blue and the number of non-blue edges incident on v
are both even. That is certainly true just before reaching v for the first
time. At that point, the number of blue edges is 0, and the number of
non-blue is deg(v), which is even by hypothesis. Proceed inductively.
Suppose we are at some vertex w and are just about walk along an
edge to reach v another time. By induction, suppose that the number
of blue and non-blue edges are both even. We next paint an edge
incident on w blue and walk to v, at which point, both the number of
blue and non-blue edges is odd. In particular, there must be at least
one non-blue edge along which we can leave. In the next step, we
pick a non-blue edge, paint it blue, and leave v, leaving the numbers
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under consideration both even again. The claim follows by induction.
Most importantly, we see that during the construction of W, whenever
we reached a vertex v 6= u, we can always continue the construction
by choosing a non-blue incident edge. Therefore, the construction
can only halt at the vertex u (and then the number of blue edges and
non-blue edges at u are both even, too).

Next, remove the edges of W from G to form a subgraph H of G.
In Figure 25, H would consist of square formed by the vertices b, d, e,
and f and the triangle formed by the vertices c, g, and h. Note that
each vertex of H has even degree since incoming and outgoing blue
edges are paired in W, and removing an even number of edges from a
vertex in G will leave an even number of edges.

c

b
f

e

d

gh

The graph H formed by removing a closed
walk from the graph in Figure 25.

In general, H may are may not be connected. However, in any case,
since G is connected, H and G must share a vertex. Call this vertex v.
Begin the process described above but with G replaced by H in order
to form a walk in H starting at v. The result will be a closed walk
in H, starting and ending at v, with no repeated edges. Call this new
walk W ′. Consider the walk in G formed by gluing together W and W ′

at the vertex v: it is formed by starting at v, taking the walk W ′ to
reach v again, then following the walk W but starting at v rather than
the inital vertex of W, and finally reaching v again after using all of the
edges of W. Call this longer walk W ′′. Now start over again with G,
and this time let H be the subgraph formed from G by removing the
edges of W ′′. This time, H has fewer edges. Repeatedly applying this
procedure eventually produced a closed Eulerian walk in G.

a

c

b
f

e

d

gh

The next step is to remove the closed
walk W ′′ = cghcabc formed by gluing
W and W ′ at c.

W

W ′

We can use the preceding theorem to obtain a result that will solve
the Königsberg bridge problem:

Theorem 116. Let G be a connected multigraph with no closed Eulerian
walk. Then G has an Eulerian walk if and only if it has exactly two vertices
of odd degree. In this case, the walk begins at one of these two vertices and
ends at the other.

Proof. First suppose that G has an Eulerian walk W with initial ver-
tex u and final vertex v. Since G has no closed Eulerian walk, u 6= v.
The first edge in W contributes 1 to the degree of u, and each subse-
quent pass through u contributes 2. All of the edges incident on u are
contained in W. Hence, the degree of u is odd. A similar argument
shows that the degree of v is odd, too.

Conversely, suppose that G has exactly two vertices of odd de-
gree, say u and v. Let G′ be the graph formed from G be adding an
edge from u to v. Then every vertex of G′ has even degree. By The-
orem 115, G′ has a closed Eulerian walk W ′. Since W ′ is Eulerian, it
contains the added edge from u to v. By changing our mind about
the beginning point of W ′, we may assume that the intial vertex is u
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and the last step in the walk is along the added edge to go from v
to u. Removing that edge from W ′ leaves a Eulerian walk in G from u
to v.

Solution to the Königsberg bridge problem: Looking back at the graph
representing the Königsberg bridge problem, we see that is has four
vertices, each with odd degree. Therefore, by Theorem 116 it has no
Eulerian walk—there is no way to walk through town and cross each
bridge exactly once.

THE HAMILTONIAN PATH PROBLEM24 asks whether a given graph 24 The problem goes back to at least
the 9th century, when the Indian poet
Radrata gave an example of a knight’s
tour in the game of chess.

has a Hamiltonian path, i.e., a walk that passes through each vertex
exactly once. The Hamiltonian cycle problem asks the same question but
for cycles rather than paths.

Climbing wall formed from three

dodecahedra (Örnskl̈dsvik, Sweden.)

In 1857, the mathematician William R. Hamilton invented a game
called the Icosian puzzle in which the vertices of a dodecahedron were
labeled with the names of cities. The objective was to start at one city,
walk along the edges of the dodecahedron to visit each other city once,
and then return to the start. In other words, the goal was to find a
Hamiltonian cycle in the edge graph of the dodecahedron:

1

2

3 4

567

8

9

10

11

12

1314

15
16

17
18

19
20

Edge graph for the dodecahedron

Exercise 117. Does the dodecahedron graph have a Hamiltonian cycle?
If so, demonstrate one by listing its vertices.

On the surface, the question of whether a graph has a Hamiltonian
cycle or path seems much like the problem of determining whether a
graph has a closed Eulerian walk or just any Eulerian walk. Therefore,
we might expect that easy criteria exist, analogous to Theorems 115
and 116. However, no such criteria are known, and it is unlikely
they exist. The Hamiltonian cycle and path problems are known in
computer science as NP-complete problems. In practice, this means
that although it is easy to verify a correct answer, the time it takes

https://en.wikipedia.org/wiki/Knight%27s_tour
https://en.wikipedia.org/wiki/Knight%27s_tour
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to solve the problem using any general procedure is likely to grow
exponentially with the size of the graph. Essentially, one must do
a brute-force search of all the options. Determining whether such
a procedure exists would solve the biggest problem in theoretical
computer science.25 25 If you have not heard of the problem

known as P versus NP, stop what you
are doing, and learn about it now!

Although there are no known necessary and sufficient conditions
for the existence of a Hamiltonian cycle, there are some interesting
sufficient conditions. For instance, it seems more likely a Hamiltonian
cycle will exist as the number of edges in your graph is large. For
instance, it is not hard to see that such a cycle exists in a complete
graph, which contains the maximal number of edges. The following
criterion was established by the physicist Gabriel Dirac in 1952:

Theorem 118. If G is a simple graph with n vertices and every vertex has
degree at least n/2, then G has a Hamiltonian cycle.

https://w.wiki/WAZ
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Trees and vertebrates

One of the most useful types of graphs is a tree. In biology, they keep
track of phylogeny, linguistics uses parse trees, and there are many
applications in computers, e.g, the directory system of folders on your
computer has a tree structure.

Definition 119. A forest is an acyclic graph, i.e., a graph which contains
no cycle as a subgraph. A tree is a connected forest.

Thus, a forest is a collection of trees! A graph is a forest if and only
if each of its connected components is a tree. Note that forests are
simple graphs, since if G has two edges e1, e2 of the form vw, then
v, e1, w, e2, v is a cycle in G.

Our first goal is to establish several basic properties of trees.

Proposition 120. G is a tree if and only if there is a unique path in G
between any two of its vertices.

Proof. The existence of a path between any two vertices is connectivity.
Uniqueness is acyclicity: if there were two paths between a pair of
vertices, then the union of those paths would contain a cycle.

Proposition 121. Suppose that T is a tree with n ≥ 2 vertices. Then T
has at least two vertices of degree 1, called leaf vertices.

Proof. The proof goes by induction on n, the base case n = 2 being
the path graph with one edge. So suppose that every tree on 2 ≤
k < n vertices has at least 2 leaves, and that T is a tree on n vertices.
Consider any edge e = vw in T, which is the unique path between v
and w in T. Removing e thus yields a disconnected graph T1 t T2,
where v ∈ T1, w ∈ T2, and T1 and T2 are trees with fewer than n
vertices.

First suppose that T1 and T2 each have at least 2 vertices. Then by
the induction hypothesis, T1 and T2 each have at least 2 leaves, so that
the disjoint union has at least 4 leaves. Hence, at least 2 leaf vertices
remain in T after replacing the edge e = vw.

Now consider the case where T1 is the single vertex v, while T2 has
at least 2 vertices. Then v is a leaf of the original tree T. Since T2 has
at least 2 leaves by the induction hypothesis, at least one remains in T
after replacing e = vw, and this leaf is distinct from v.

The equivalence presented here means
that we could have chosen any of the
listed conditions to define a tree.

The first time through this material,
the reader may want to concentrate
more on the statement of the result than
on its proof.

Proposition 122. Suppose that G is a multigraph on n vertices. The
following are equivalent:

(i) G is a tree;
(ii) G is minimal connected: G is connected and removing any edge

from G yields a disconnected multigraph;
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(iii) G is maximal acyclic: G is acyclic and adding any edge between
vertices of G produces a cycle;

(iv) G is connected and has n− 1 edges;
(v) G is acyclic and has n− 1 edges.

Proof. (i) =⇒ (ii): Consider the removal of an edge e = vw from G. If
after removal there is still a path P from v to w, then P and v, e, w are
two different paths in G from v to w, contradicting uniqueness.

(ii) =⇒ (iii): If G contained a cycle, then removing any edge contained
in the cycle would not disconnect the graph, so G would not be mini-
mal connected. Hence G is acyclic. Consider any two vertices v, w of
G. Since G is connected, there exists a path P from v to w in G—choose
P to be of minimal length, so that no vertex or edge is repeated. But
then adding a new edge of the form e = wv to G would yield a cycle
P, e, v.

(iii) =⇒ (i): Consider the graph H obtained by adding an edge e = vw
to G. By assumption, H has a cycle of the form C = v, e, w, P. Then P
must be a path from w to v in G. Acyclicity implies that P is in fact the
unique path from w to v in G.

(i) =⇒ (iv) and (v): We prove that G has n− 1 edges by induction on
n, the base case n = 1 being clear. So suppose that every tree on n− 1
vertices has n− 2 edges, and that G is a tree on n vertices. Choose a leaf
vertex v, and let G′ be the multigraph obtained from G by removing v
and the unique edge incident to v. Then G′ is a tree on n− 1 vertices,
hence has n− 2 edges by the induction hypothesis. It follows that G
has n− 1 edges as required.

(iv) =⇒ (v) and (i): Suppose that G is connected with n− 1 edges. To
get a contradiction, suppose that G has a cycle, and choose an edge e
contained in the cycle. Removing e does not disconnect the graph G,
so G is not minimal connected. Let G′ be any minimal connected
subgraph of G containing all n vertices. By (ii) =⇒ (i), G′ is a tree with
fewer than n− 1 edges, contradicting the implication (i) =⇒ (iv). Thus
G, is acyclic, and hence a tree.

(v) =⇒ (iv): Finally, suppose that G is acyclic with n− 1 edges. Again
we proceed by contradiction: suppose that G is not connected, and
choose two vertices v, w in different connected components. Then
adding the edge e = vw does not produce a cycle, so G is not maximal
acyclic. Let M be a maximal acyclic multigraph on the same n vertices
as G and containing G as a subgraph. By (iii) =⇒ (i), M is a tree with
more than n− 1 edges, contradicting the implication (i) =⇒ (v).

HOW MANY TREES are there? The three unlabeled trees with five
vertices are shown below. In accordance with Proposition 122 each has
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four edges:

A list of values for the number of unlabeled trees on n vertices can be
found [here] on the Online Encyclopedia of Integer Sequences. For more
on counting unlabeled trees, see [Pak, 2018, Theorem 1.4].

Exercise 123. Draw the 11 unlabeled trees on 7 vertices.

What about labeled trees? Of course, there will be a lot more of these.
For instance, the only unlabeled trees on four vertices are a star and a
path:

However, there are 16 trees with vertex set [4] = {1, 2, 3, 4}:

1

2

34

2

1

34

3

1

24

4

1

23

1

3

4

2

1

4

3

2

1

2

4

3

1

4

2

3

1

2

3

4

1

3

2

4

2

1

4

3

2

4

1

3

2

1

3

4

2

3

1

4

3

1

2

4

3

2

1

4

Suppose you did not have the list of 16 trees with vertex set [4].
How could you go about finding them? One way to proceed is to start
with the 2 unlabeled graphs on 4 vertices. The task then is to find the
different ways of labeling the vertices of these two graphs with the
numbers 1, 2, 3, 4. For the star graph, there is one vertex with degree 3.
The other vertices are “symmetric” in the sense that permuting labels
on these vertices does not change the (labeled) graph. For instance,
the two graphs in the margin are the same. We know the these two

1

2

34

1

3

24

graphs are equal (not just isomorphic) since they have the same
vertices and the same edges. Thus, there are 4 labeled star graphs
with vertex set [4], each arising from a choice of a central vertex. Now
consider the path graph. At first, you might think there are 4! = 24

https://oeis.org/A000055
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ways of labeling the vertices of the unlabeled path graph—one for
each permutation of [4]. However, note that the following two graphs
are the same:

1 2 3 4 4 3 2 1

Why? Again: these two graphs have the same set of vertices and the
same set of edges. In fact, the symmetry we see about the center is the
only source of overcounting. Therefore, there are 4!/2 = 12 labeled
path graphs with four vertices. Adding in the labeled star graphs, we
get all 16 labeled graphs on [4].

Exercise 124. Arguing from unlabeled trees as above, determine the
number of (labeled) trees on five vertices.

Unlike the case of unlabeled graphs, there is an elegant formula
for the number of labeled graphs. We state that now and present a
particularly elegant proof due to André Joyal.

Theorem 125 (Cayley’s formula). The number of trees on n vertices
is nn−2.

Arthur Cayley (1821–95).

André Joyal (1943–).

Proof. Let Tn denote the number of trees on n vertices. Then Cayley’s
formula can be restated as

n2Tn = nn.

To prove Cayley’s formula, Joyal creates a bijection between two
sets, one of size n2Tn, and the other of size nn. The latter sets is easy
to describe: it is [n][n], the set of all functions of {1, 2, . . . , n} to itself.
(Recall that [n][n] has nn elements since for each of the n elements in
the domain of such a function, there are n choices for an assigned
value in the codomain.) The former set — the one with n2Tn elements
— consists of what Joyal called vertebrates.

A vertebrate on n vertices is a tree T with vertex set [n] and a choice
of an ordered pair (t, h) consisting of vertices t and h of T (where t = h
is allowed). The vertex t is called the tail of the vertebrate, and h
is the head. The number of vertebrates on n vertices is n2Tn since
there are Tn choices for T, and for each each of these, there are n
possibilities for each of t and h. Let Vn denote the set of all vertebrates
on n vertices. To prove the validity of Cayley’s formula, it suffices to
create a bijection:

J : Vn → [n][n].

Why the word vertebrate? Given the tree T with tail t and head h,

A vertebrate (by Michael Paulus).

there is a unique path from t to h, which we imagine to be the spine of
some creature. The edges not on this path are the creature’s appendages.

https://en.wikipedia.org/wiki/Andr%C3%A9_Joyal
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When drawing a vertebrate, we will highlight its spine, which will be
used in the construction of our bijection. See Figure 26.

3

t
8

6

1

2

h4

5

9

7

Figure 26: Vertebrate on 9 vertices with
tail vertex 8 and head vertex 4.

Vertebrates to functions. Before giving the formal definition, we
first describe the mapping J : Vn → [n][n] by example using the
vertebrate T of Figure 26 with tail t = 8 and head h = 4. To find
the corresponding mapping f : [9] → [9], start with the values of f
along the spine. The spine vertices, in their tail-to-head order along
the spine, are 8, 6, 2, 4. List these numbers in two rows. The top row
is the natural ordering of these numbers, and the bottom is their
“spine-ordering”:

i 2 4 6 8
f (i) 8 6 2 4

. (∗)

Then start to define f be sending each number in the top row to its
corresponding number below it, as shown in the table.

It remains to assign values to the vertices along the appendages. To
do this, direct the edges incident on appendage vertices so that they
point towards the spine, as shown in Figure 27.

3

t
8

6

1

2

h4

5

9

7

Figure 27: Directing addendage edges
towards the spine.

If the integer i is an appendage vertex, let f (i) be vertex adjacent
to i on the path leading to the spine. Thus, for instance, f (7) = 9
and f (9) = 4. Filling in these values defines f on the rest of its
domain:

i 1 2 3 4 5 6 7 8 9
f (i) 6 8 8 6 4 2 9 4 4

.

(The spinal vertices are in blue as a visual cue.) We now let J(T, (t, h)) =
f ∈ [9] [9].

We now proceed to the formal definition of the mapping J : Vn →
[n][n]: Let T, (t, h) be a vertebrate. Our task is to define f := J(T, (t, h)) ∈
[n][n].

(i) First define f for the vertices along the spine. Say the spinal
vertices are v1, . . . , vk, in order along the spine from tail to head.
Let a1 < · · · < ak be the permutation of these spinal vertices
into their natural ordering as integers. Then define f (ai) = vi

for i = 1, . . . , k. Thus, f permutes the spinal vertices.
(ii) Next, direct all edges incident on appendage (non-spinal) ver-

tices so that they point towards the spine. If i is an appendage
vertex, define f (i) = j if j is the vertex adjacent to i along the
directed path from i to the spine.

Functions to vertebrates. We now describe the inverse of the map-
ping J : Vn → [n][n], starting with an example. Consider the function
given by the table in Figure 28.

i 1 2 3 4 5 6 7 8 9
f (i) 3 5 8 7 5 1 4 1 2

.

Figure 28: A function f : [9]→ [9].
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We are hunting for a corresponding vertebrate. To begin, associate
a directed graph to f with vertex set [9] and with edges (i, f (i)) for i ∈
[9]. This graph is pictured in Figure 29.

6

1

3 8

5 2 9

4 7

Figure 29: Directed graph associated
with the function in Figure 28.

Each of the components of the resulting graph has a unique cycle.26

26 It is generally true that each compo-
nent of the directed graph associated
to a function f : [n] → [n] will have
a unique cycle. To see this, consider a
component H of the graph. Each vertex
of H has a single out-going edge, and
thus, the number of vertices and edges
of H are equal. One characterization of a
tree is a connected graph with one fewer
edge than vertex. Thus, H is connected
but not a tree. So H must have a cycle.
Removing one edge from the cycle
leaves a tree, and it is a general fact that
adding an edge to a tree produces a
unique cycle.

The cycles are 1 → 3 → 8 → 1, and 5 → 5, and 4 → 7 → 4. Consider
the function restricted to the vertices in these cycles:

i 1 3 4 5 7 8
f (i) 3 8 7 5 4 1

.

The list of vertices in the bottom row of the table defines the spine,
from tail to head, of the vertebrate we are seeking:

t
3 8 7 5 4

h
1 .

Finally, for each appendage vertex i, we attach the edge {i, f (i)}.
These are undirected versions of the edges appearing in Figure 29:

t
3 8 7 5 4

h
1

69
2

.

Exercise 126. Apply the mapping J : Vn → [n][n] to the above verte-
brate to see that you recover the original function f .

We now formally define the inverse mapping J−1 : [n][n] → Vn.
Let f : [n] → [n]. Our task is to find a vertebrate T, (t, h) such
that J(T, (t, h)) = f .

(i) Create a directed graph G with vertex set [n] and directed
edges (i, f (i)) for i ∈ [n].

(ii) Let i1 < i2 < · · · < ik (with the natural ordering as integers)
be the vertices appearing in cycles in G. Define the spine of the
vertebrate T, (t, h) we are constructing to be the path graph with
vertices f (i1), . . . , f (ik). Thus, t := f (i1) and h := f (ik).

(iii) Finally, for each vertex i of G that is not in a cycle, add the
(undirected) edge {i, f (i)} to T.

Exercise 127. Choose a vertebrate with vertex set [n] for some n, and
then determine its corresponding function f under our bijection. Next
choose some function f : [n] → [n], and determine its corresponding
vertebrate.

Exercise 128. Verify that J ◦ J−1 = id[n][n] and J−1 ◦ J = idVn .
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Once the reader has finished this exercise (perhaps referring to
the subsequent example for some pointers), we will know that J is a
bijection, so n2Tn = |Vn| =

∣∣∣[n][n]∣∣∣ = nn, as desired.

Example 129. Here is a final example illustrating the special case
where t = h. Start with the vertebrate T, (t, h) in Figure 30.

2 5

1

4

h = t3

Figure 30: Vertebrate in for which t = h.

To define the corresponding function f := J(T, (t, h)), we first
define f along the spine as in the table (∗). This tells us that f (3) = 3.
We then direct the appendage edges (in this case, all of the edges)
towards the spine and read off the rest of the function:

i 1 2 3 4 5
f (i) 3 3 3 3 2

.

To reverse the process, first draw the directed graph G correspond-
ing to f as in Figure 31.

2 5

1

4
3

Figure 31: Graph for the function
corresponding to the vertebrate in
Figure 30.

There is only one connected component in G, and it has a single
cycle: a loop at 3. This means that the corresponding vertebrate has a
spine with t = h = 3. Adding the appendage edges {i, f (i)} for i 6= 3
then recovers the original vertebrate.
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P R O B L E M S
1. A complete graph on n vertices, denoted Kn, has every possible edge.

Draw pictures of K3, K4, and K5. How many edges are there in a
complete graph on n vertices? For a general graph G = (V, E),
make an inequality relating |V| and |E|.

2. A graph G = (V, E) is called bipartite if it is possible to partition V
with nonempty sets as V = Aq B such edges only go between A
and B. The complete bipartite graph on p + q vertices, denoted Kp,q, has
|A| = p, |B| = q, and all possible edges between A and B.

(i) Draw pictures of K2,3 and K3,5.
(ii) How many edges are in Kp,q?

(iii) If |A| = p and |B| = q with A ∩ B = ∅, how many (not
necessarily complete) bipartite graphs have vertex set A ∪ B
with Aq B as the specified partition?

3. The definition of graph isomorphism implies that isomorphic
graphs have the same number of vertices and same number of
edges.

(i) Must two graphs with the same number of vertices and
same number of edges be isomorphic? Prove it or find a
counterexample?

(ii) The degree sequence of a graph is a list of its vertex degrees
in non-decreasing order. Prove that graphs with the same
degree sequence have the same number of edges.

(iii) Must two graphs with the same degree sequences be isomor-
phic? Prove it or find a counterexample.

4. Determine whether the following graphs are isomorphic.

5. Determine whether the graphs in any pair of the following are
isomorphic.

a b

cd

e f

gh α

β

γ

δ

ε

ζ

η

θ

0

1
2

3

4

5
6

7
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6. Consider the graph pictured in the margin.

a
b

c

d

e

(i) Find a path of maximal length. (Recall: a path contains no
repeated vertices.)

(ii) Find a cycle containing all of the vertices.
(iii) Find an Eulerian walk from a to c.
(iv) Find a Hamiltonian cycle.

7. Consider the following floor plan for a building:

We would like to know if it is possible to cross each interior wall in
the building exactly once (without teleporting).

(i) Turn this into graph theory problem. (Draw the correspond-
ing graph.)

(ii) Either find such a walk, or prove that no such walk exists.
(iii) What if we want to pass through the exterior walls exactly

once as well?

8. Does the dodecahedron graph have a Hamiltonian cycle? If so,
demonstrate one by listing its vertices.

1

2

3 4

567

8

9

10

11

12

1314

15

16

17
18

19
20

9. (i) Find the three unlabeled trees with five vertices.
(ii) Use these unlabeled trees to count the number of (labeled)

trees with five vertices.

10. Determine the functions [8] → [8] associated with the following
vertebrates:
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(i)

t
3

5

7

h
2

1

4

8

6

(ii)

3

5

7

2

1

h
4

t
8

6

(iii)

3

5

h = t

7

2

1

4

8

6

11. Find the vertebrates associated with the following functions

(i)
i 1 2 3 4 5 6 7 8 9

f (i) 4 6 5 2 9 1 7 4 3

(ii)
i 1 2 3 4 5 6 7 8 9

f (i) 2 3 1 5 6 1 8 8 8

12. Characterize the vertebrates associated with functions [n] → [n]
which are permutations (i.e., bijective).



Catalan structures

THE CATALAN NUMBERS form the sequence

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

The pattern is not immediately evident, but these numbers have an
uncanny tendency to appear in combinatorial problems. 27 There are 27 There is a famous problem in Richard

Stanley’s Enumerative Combinatorics,
vol. 2 [Stanley, 1999] with 66 parts,
each asking to enumerate a different
combinatorial structure. The answer to
each part is “the Catalan sequence”. An
addendum brings the number of parts
to over 200.

many ways to define the Catalan numbers, but we will choose the
following:

Definition 130. For n ≥ 0, the n-th Catalan number is

Cn =
1

n + 1

(
2n
n

)
.

The defining formula can be rewritten as (2n)!
(n+1)!n! or ∏n

k=2
n+k

k . How-
ever, it is not clear from any of these expressions that the Catalan
numbers are actually integers. Here is one way to see that they are:

Exercise 131. Show that for n ≥ 0,

Cn =

(
2n
n

)
−
(

2n
n + 1

)
.

Where do these binomials sit in Pascal’s triangle?

A Catalan structure is a class of objects that is naturally enumerated
by the Catalan sequence. Among the many such structures, we will
examine a few here: Dyck paths, balanced parenthesizations, binary
trees, parenthesizations of binary operators, and increasing parking
functions.

Dyck paths and balanced parenthesizations

A DYCK PATH IS a special type of NE lattice path.

Definition 132. A Dyck path of length 2n is a NE path starting at (0, 0),
ending at (n, n), and never going above the diagonal, i.e., whose
vertices (a, b) satisfy a ≥ b.

http://www-math.mit.edu/~rstan/ec/catalan.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf
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Example 133. There are 14 Dyck paths of length 8 (n = 4):

Theorem 134. The number of Dyck paths of length 2n is the Catalan
number Cn := 1

n+1 (
2n
n ).

Proof. Let L be the set of NE lattice paths from (0, 0) to (n, n). To
prove the theorem, we will partition L into n + 1 sets of equal size

L = E0 q E1 q · · · q En

where E0 is the set of Dyck paths of length 2n. Since the cardinality
of L is (2n

n ) and each Ei has the same size, the result will then follow:(
2n
n

)
= |E0|+ |E1|+ · · ·+ |En| = (n + 1)|E0| =⇒ |E0| =

1
n + 1

(
2n
n

)
.

Define the exceedance of a NE lattice path to be the number of its
north steps that are above the diagonal, and define Ei to be the subset
of L consisting of paths with exceedance i. Then, as desired the Ei

partition L and E0 is the set of Dyck paths of length 2n.

Figure 32: A NE lattice path with
exceedance 4.

It remains to be shown that the Ei share the same cardinality, and
we do this by describing bijections

Ei → Ei+1

for i = 1, . . . , n. Each path in Ei can be dissected into subpaths as
BeAnC where

e = first east step below the diagonal
B = the first part of the path, possible empty, preceding e
n = the first north step after e that touches the diagonal
A = the part of the path between e and n, possibly empty
C = the rest of the path.
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Define the bijections Ei → Ei+1 by

Ei → Ei+1

BeAnC 7→ AnBeC.

For example,

e

n

B
A

C

BeAnC

exceedance 4

n

e
B

A

C

AnBeC

exceedance 5

Verification that this defines a bijection is left to the reader.

A balanced parenthesization of length 2n is a string of open parenthe-
ses “(” and closed parentheses “)”. such that when read from left to
right, at no time does the number of closed parentheses exceed the
number of open parentheses.

Example 135. There are 14 balanced parenthesizations of length 8:

(((()))) ((()()))

((())())

(()(()))

()((()))

(()()())

((()))()

()(()())

(())(())

(()())()

(())()()

()(())()

()()(())

()()()()

Given a balanced parenthesization of length 2n, substituting E
for ’(’ and N for ’)’ gives a string of letters describing a NE lattice path
from (0, 0) to (n, n). Further, as the path is traced out, at no time does
the number of north steps taken exceed the number of east steps. In
other words, we get a Dyck path.

Bijection between balanced parenthe-
sizations of length 2n and Dyck paths of
length 2n.

Exercise 136. Check that the parenthesizations in Example 135 match
the Dyck paths in Example 133 using our bijection.

Proposition 137. The number of balanced parenthesizations of
length 2n is the Catalan number Cn := 1

n+1 (
2n
n ).

Proof. The result follows from the bijection with Dyck paths and
Theorem 134.
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Proposition 138. The Catalan numbers satisfy the following recur-
rence:

C0 = 1 and Cn+1 =
n

∑
k=0

CkCn−k for n ≥ 0.

Proof. We will give a combinatorial proof in terms of balanced paren-
thesizations, which we have just seen are enumerated by the Catalan
numbers.

As we read a balanced parenthesization, the number of open paren-
theses is always at least as great as the number of close parentheses,
and when we reach the end, they are equal. It could happen, though,
that as we read, the numbers of opens and closes could be equal at
an earlier point. For example, in (()())(())(), the first six characters
form the balanced parenthesization (()()) in which the number of
open and closed parentheses are both equal to 4. If we think about the
Dyck path corresponding to the original parenthesization, it hits the
diagonal at the point (3, 3), after six steps (cf. Figure 33).

Figure 33: The Dyck path corresponding
to (()())(())() meets the diagonal for
the first time since leaving the origin
after six steps.

Define the first balance number of a balanced parenthesization p to
be i if, while reading from left to right, the number of open parenthe-
ses equals the number of closed parentheses for the first time after
reading 2i parentheses. (We do not count the initial point, when the
number of open and closed parentheses is both 0.) For instance, the
first balance number for the parenthesization in Figure 33 is 3.

Fix n ≥ 1, and let P denote the set of balanced parenthesizations of
length 2n. We have the following partition:

P = B1 q · · · q Bn

where Bk consists of the elements p ∈ P with first balance number
equal to k. Thus, |P| = ∑n

k=1 |Bk|, and by Proposition 137, |P| = Cn.
Our next goal is to compute |Bk| in terms of Catalan numbers.

Each p ∈ Bk can be written p = p1 p2 where p1 is the balanced
parenthesization consisting of the the first 2k parentheses of p and p2

is what remains. For our previous example, we have

p = (()())︸ ︷︷ ︸
p1

(())()︸ ︷︷ ︸
p2

.

How many choices are there for p1 and p2? First note that p2 is an
arbitrary balanced parenthesization of length 2(n − k). Therefore,
by Proposition 137, there are Cn−k choices for p2. Counting the pos-
sibilities for p1 is more interesting. The key observation is that p1

starts with an open parenthesis, and that parenthesis is closed by
its last parenthesis—after the opening parenthesis, the number of
open parentheses outnumbers the number of closed parentheses until
we reach the end of p1. This implies that if we remove the first and
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last parentheses in p1, we get another balanced parenthesization p̃.
So p = ( p̃). In fact, a little thought yields that p̃ can be any balanced
parenthesization of length 2(k− 1). Therefore, the number of choices
for p1 is Ck−1.

In sum, there are Ck−1 choices for p1 and Cn−k choices for p2. By
the multiplicative counting principle, |Bk| = Ck−1Cn−k. From our
partition, it follows that

Cn = |P| =
n

∑
k=1
|Bk| =

n

∑
k=1

Ck−1Cn−k.

After reindexing, this is exactly the recurrence we are trying to prove.
In detail, let k′ := k − 1 and n′ := n − 1. As k ranges from 1 to n,
it follows that k′ ranges from 0 to n− 1, i.e., from 0 to n′. Also, note
that n′ − k′ = n− k. Substituting, we get

Cn′+1 =
n′

∑
k′=0

Ck′Cn′−k′ .
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Full binary trees and parenthesizations of binary operators

RECALL THAT A TREE is a connected graph with no cycles. Its
leaves are its vertices of degree one. A rooted tree is a tree with a distin-
guished vertex called its root. Thus, a tree with n vertices gives rise
to n rooted trees, depending on which vertex is designated as the root.

We adopt language from genealogy. Let T be a tree with root
vertex r. Given any vertex v of T, there is a unique path from r to v.
The vertices along this path, not including v are the ancestors of v. The
vertex immediately preceding v on this path is the parent of v, and the
other vertices adjacent to v are the children of v.

Definition 139. A full binary tree is a labeled rooted tree in which
each non-leaf vertex has exactly two children. The labels are words
in the alphabet {LR} (where L and R stand for “left” and “right”,
respectively), and are determined by recursion. The root vertex has
label ∅, and if the label of a vertex v is W, then the labels of its two
children are WL and WR.

A full binary tree can be drawn with the root vertex at the top and
such that the two children of each vertex v sit below and to the left
and right of v. With that convention, we can dispense with labeling
our drawings of full binary tree.

Example 140. Explicit vertex labels are superfluous in the drawing of a
full binary tree:

∅

L R

RL RR

RLL RLR

Exercise 141. Draw the 14 full binary trees with five leaves.

Proposition 142. The number of full binary trees with n + 1 leaves is
the Catalan number Cn := 1

n+1 (
2n
n ).

Proof. The proof is left as an exercise. Hint: it suffices to show that the
number of full binary trees with n + 1 leaves satisfies the recursion in
Proposition 138.

A binary operation on a set S is a function of the form S× S → S. It
takes two elements of the set and returns a third. Familiar examples
include addition and multiplication of integers. Full binary trees
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arise in considering multiple applications of a binary operation. As
an example, consider a binary operation on the set S = {a, b, c, d}.
We will use multiplicative notation so that ab, for example, denotes
the element of S resulting from applying the binary operation to
the ordered pair of elements (a, b). The expression ((a(bc))d) then
represents first combining b and c to get bc, then combining a with bc
to get a(bc), then combining a(bc) with d to get ((a(bc))d). We say
that ((a(bc))d) is the result of 3 associations of a binary operator or the
result of completely parenthesizing 4 factors. It turns out that the number
of complete parenthesizations of 4 factors is 5, which the reader no
doubtedly recognizes as the third Catalan number!

(((ab)c)d)

((a(bc)d)

(a((bc)d)) ((ab)(cd))

(a(b(cd))

Figure 34: The 5 complete parenthesiza-
tions of 4 factors.

Proposition 143. The number of complete parenthesization of n + 1
factors is the n-th Catalan number, Cn.

Sketch of proof. We will describe a bijection between full binary trees
with n + 1 leaves and complete parenthesizations of n + 1 factors. The
result then follows from Proposition 142. Given a binary tree with n + 1
leaves, label the leaves with the n + 1 factors. Group factors starting at
the bottom of the tree and working towards the root. The details are
left to the reader with the following example as a guide:

a

d

b c

a

(bc) d

a ((bc)d)

(a((bc)d))

Most familiar binary operations — addition or multiplication of
real numbers, for instance — are associative: (ab)c = a(bc). This
might make the distinction between these terms feel artificial, but
one of the lessons of contemporary mathematics is that it is useful
to remember how things are the same instead of just when they are the
same. We can also note that a computer programmed to perform
binary operations will have to choose a way to associate a product of
the form a1a2 · · · an+1; Proposition 143 tells us that the computer has
Cn choices.

A right rotation of a complete parenthesization transforms ((AB)C)
into (A(BC)). Here A, B, C can each be single terms or complete
parenthesizations, and there may be more parts to the parenthe-
sization to the left, right, or subsuming the ((AB)C) portion; these
additional components remain fixed. A left rotation transforms an
expression (A(BC)) into ((AB)C). A B

C A

B C

Figure 35: By the bijection from Proposi-
tion 143, we can also view rotation as an
operation on trees.
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Given all of the complete parenthesizations of n + 1 terms, we can
form a directed graph with edges X → Y when Y is a (single) right
rotation of X. If n = 2, then we have the following graph with two
vertices and one directed edge:

((ab)c) −→ (a(bc)).

If n = 3, things get more interesting. We have C3 = 5 vertices
arranged as follows: The reader is encouraged to draw the

tree version of this picture as well.

(((ab)c)d)

((ab)(cd))

((a(bc))d)

(a(b(cd)))

(a((bc)d)).

Passing to n = 4, we have C4 = 14 vertices, and our picture becomes
markedly more complex. Remarkably, this graph can be organized
as the edges in a polytope (a figure in 3-dimensional space formed by
gluing polgons along their edges). This figure is called the associahe-
dron, and it has six pentagonal faces and three quadrilateral faces. In

Figure 36: The front and back sides of
the 3-dimensional associahedron; see
the cover page for a larger version.

fact, every right rotation graph for complete parenthesizations forms
the edges of a (higher-dimensional) polytope. A precise statement and
proof of this fact would take us well outside of the scope of this text,
but the interested reader is directed to Loday [2004].28 28 The associahedron has also appeared

in Reed Magazine!Earlier, we gave a bijection between Dyck paths of length 2n and
balanced parenthesizations of length 2n. On the other hand, the
proof of Proposition 143 describes a bijection between full binary
trees with n + 1 leaves and complete parenthesizations with n + 1

https://www.reed.edu/reed-magazine/articles/2019/associahedron.html
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factors. Note that we are considering two different types of structures
involving parentheses.

We now briefly describe a bijection between full binary trees with
n + 1 leaves and balanced parenthesizations of length 2n. Given a
full binary tree, label each left edge with a ‘(’ on its left and a ‘)’ on
its right. Right edges are unlabeled. Then, starting at the root of the
tree, take a countclockwise trip around the tree, hugging close to the
edges and ending eventually returning to the root, this time from the
other side. Read off the labels as they are encountered. The full trip
will pass by both sides of each edge of the tree. See Figure 37 for an
example (the dashed line gives a hint of the path).

(
)

(
)

(
)

(
)

(
)

(
)

etc. etc.

full binary tree

((()))(()())

balanced parentheses

Figure 37: Bijection between full binary
trees and balanced parenthesizations.
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Noncrossing partitions

Consider the following two partitions of [10]:

P = {{1, 9, 10} , {2, 3, 7} , {4, 5, 6} , {8}}

Q = {{1, 5, 6, 7} , {2, 3, 8} , {4} , {9, 8}} .

The pictures below are constructed by writing the numbers in [10] in a
circle and then forming convex polygons whose vertices are the parts
of the partitions:

1
2

3

4

5
6

7

8

9

10

P
noncrossing

1
2

3

4

5
6

7

8

9

10

Q
crossing

1 2 3 4 5 6 7 8 9 10

P

1 2 3 4 5 6 7 8 9 10

Q

Figure 38: Another way of picturing the
partitions P and Q.

We say that P is a noncrossing partition since the polygons in its circular
diagram do not cross. We can rephrase this condition purely in terms
of the partition, itself, without reference to a diagram:

Definition 144. Let P be a partition of [n] for some n ∈ N. Then P is
noncrossing if there do not exist distinct parts X, X′ of P with a, b ∈ X
and a′, b′ ∈ X′ such that a < a′ < b < b′.

The partition Q in the example above has parts X = {1, 5, 6, 7}
and Y = {2, 3, 8}. We have 1, 5 ∈ X and 2, 8 ∈ Y with 1 < 2 < 5 < 8.
Thus, Q is not a noncrossing partition.

Exercise 145. Draw all noncrossing partitions of [4]. How many
partitions of [4] are noncrossing, and how many are noncrossing?

Proposition 146. The number of noncrossing partitions of n ∈N is the
Catalan number, Cn.

Proof. In light of Proposition 137, it suffices to give a bijection between
balanced parenthesizations of length 2n and noncrossing partitions
of [n]. Given a balanced parenthesization of length 2n, label its left
parentheses with the numbers 1, . . . , n, in order, left to right. Now
label the right parentheses by the labels of their matching left paren-
theses. In detail, given a left parenthesis with label i, starting with that
parenthesis, read left to right counting the number of left and right
parentheses. Find the first right parenthesis at which the number of
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left and right parentheses is equal, and give that right parenthesis
the label i. Ultimately, the labels of the maximal contiguous right
parentheses now partition n. (See Example 147.)

Example 147. Consider the balanced parenthesization.

(((((()))()))()(())) = LLLLLLRRRLRRRLRLLRRR.

We have translated the parenthesization into a word in L and R (for
“left” and “right” parenthesis, respectively). Label the left parentheses,
then label their corresponding right parentheses, and finally read off
the indices of sets of contiguous right parentheses:

L1L2L3L4L5L6RRRL7RRRL8RL9L10RRR

L1L2L3L4L5L6 R6R5R4︸ ︷︷ ︸
{4,5,6}

L7 R7R3R2︸ ︷︷ ︸
{2,3,7}

L8 R8︸︷︷︸
{8}

L9L10 R10R9R1︸ ︷︷ ︸
{1,9,10}

The resulting partition is P = {{1, 9, 10} , {2, 3, 7} , {4, 5, 6} , {8}}, our
original example. The Dyck path corresponding to the parenthesiza-
tion is

The reader may wish to contemplate how to go directly from a Dyck
path to a corresponding noncrossing partition (without first translat-
ing the path into a balanced parenthesization).

Example 148 (Summary of Catalan bijections). We have developed
bijections between the following Catalan structures:

· Dyck paths of length 2n,

· balanced parenthetical expressions with n pairs of (),

· full binary trees on n + 1 leaves,

· full parenthesizations of n + 1 factors,

· noncrossing partitions of [n].
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Let’s review these bijections, starting with the following full binary
tree:

.

Full binary tree to parenthesizations of n + 1 factors. Labeling the
leaves of the tree from left to right make this bijection clear:

fea

d

b c

((a((bc)d))(ef)).

Full binary tree to balanced parenthesization. To form the corre-
sponding balanced parenthesization, we label each left edge with a “(”
on its left and a “)” on its right. We then take a counterclockwise trip
around the tree, hugging close to the edges and reading off the labels:

( )

( )

( )

( )

( )

(( )(( )))( ).

Balanced parenthesization to Dyck path. The correspondence be-
tween balanced parenthesizations and Dyck paths is easy: convert “(”
to “E” (an east step) and “)” to “N” (north step):
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(( )(( )))( ) .

Balanced parenthesization to noncrossing partition. For this bijec-
tion, we number the left parentheses and then number each right
parenthesis with the number of the left parenthesis it closes. The
labels of contiguous groups of right parentheses form the partition
of [n]:

(( )(( )))( ) → LLRLLRRRLR

→ L1L2RL3L4RRRL5R

→ L1L2R2L3L4R4R3R1L5R5

→ L1L2 R2︸︷︷︸
2

L3L4 R4R3R1︸ ︷︷ ︸
1,3,4

L5 R5︸︷︷︸
5

→

1

2

34

5

.
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Parking functions

Suppose there is a line of n cars, C1, . . . , Cn, traveling down a street
with C1 in the lead. Further along that street, there is a line of n park-
ing spaces labeled, in order, 1, . . . , n. The driver of each car has a
preferred parking space. We list these preferences as an ordered list
p = (p1, . . . , pn) where pi is the preference for Ci. The protocol is that
the driver of Ci will drive to parking space pi, ignoring the state of any
previous parking spaces. If space pi is empty, car Ci parks there. If it
is full, then Ci parks in the next available space. Figure 39 gives three
examples.

(i) C2

3

C1

2

C3

1

231 C1 C2 C3

(ii) C3

3

C1

2

C2

1

212 C1 C2 C3

(iii) C2

3

C3

2

C1

1

131 C1 C2 C3

Figure 39: Three examples of park-
ing functions. In each case, the cars
C1, C2, C3 drive across the page from
right-to-left to parking spots labeled
1, 2, 3. The parking preferences for each
car are listed in order above the arrows.

If p is a permutation of the list (1, . . . , n), then there is a unique
parking space for each car, and each car Ci will end up in its preferred
space. On the other hand, suppose p is the constant list (1, 1, . . . , 1).
Then car C1 will drive to space 1 and park; car C2 will find space 1
filled and drive on to 2, the next available space. In the end, each Ci

parks in space i. Only C1 gets its preferred spot.
Not every list of parking preferences p allows every car to park. For

instance, consider the constant list p = (n, n, . . . , n). Car C1 parks in
space n. Next, C2 drives past the empty parking spaces 1, . . . , n− 1 to
its preferred space n but finds it filled. The protocol says C2 should
drive on and take the next available space. However, there are no
more available spaces. In fact, only C1 can park with this p. Those
parking preferences p that allow every car to park are called parking
functions of length n.29 29 Parking functions where first intro-

duced in a computer science context
(hashing functions) [Konheim u.a.,
1966].

Exercise 149.

(i) Which of the following lists of parking preferences are parking
functions? For each that is, find the resulting assignment of cars
to parking spaces.
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(a) (3, 1, 3, 1, 4) (b) (2, 3, 2, 4)
(c) (2, 1, 3, 2) (d) (4, 3, 1, 3, 4)

(ii) Let X := {(p1, p2, p3) ∈ Z3 : 1 ≤ pi ≤ 3}. What is the
probability that an element of X chosen uniformly at random
is a parking function? In other words, what is the number of
parking functions in X divided by the total number of elements
in X?

The list of parking preferences (2, 3, 2, 4) in Exercise 149 (i) (b), has
no driver preferring parking space 1. That means all four cars need
to park in the three remaining spaces, 2, 3, 4, which is impossible.30 30 Note the application of the pigeonhole

principle here.A similar problem arises in (ii) (d): if the preferences are (4, 3, 1, 3, 4),
then one car will get space 1 but the remaining four cars are compet-
ing for only three parking spaces: 3, 4, 5.

Let p be a list of preferences, and let the cars park according to p.
If p is not a parking function, then some of the cars are not able to
park in spaces 1, . . . , n. Suppose we send these cars to a special over-
flow parking lot. So now everyone has a space to park, and p is a
parking function exactly when no car ends up parked in the overflow
lot, i.e., exactly when all the spaces 1, . . . , n are filled. Note that space 1
is filled exactly when at least one car prefers space 1. Next note that
spaces 1 and 2 are both filled exactly when space 1 is filled and at least
two cars prefer spaces numbered at most 2, taking into account the
possibility that a car preferring space 1 is forced to park in space 2,
instead. Continuing this line of thought proves the following result.

Proposition 150. Let p = (p1, . . . , pn) ∈ Zn with 1 ≤ pi ≤ n for all i.
Then p is a parking function if and only if for each j = 1, . . . , n, the
number of cars willing to park in some space in {1, . . . , j} is at least j:

|{i : pi ≤ j}| ≥ j.

For p, q ∈ Zn write q ≤ p if qi ≤ pi for all i. A maximal parking
function is a parking function p maximal with respect to ≤, i.e., with
the property that if p ≤ q for some parking function q, then p = q. Let
~1 = (1, . . . , 1).

Corollary 151. Suppose that p = (p1, . . . , pn) is a parking function.

(i) Then so is (pπ(1), . . . , pπ(n)) for any permutation π of the in-
dices 1, 2, . . . , n.

(ii) If~1 ≤ q ≤ p, then q is a parking function.
(iii) The maximal parking functions are exactly the n! lists obtained

by permuting the components of (1, . . . , n).

Proof. To prove the first part of this corollary, note that the condition
|{i : pi ≤ j}| ≥ j in Proposition 150, which determines whether p
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is a parking function, just counts the number of pi for each j. The
condition does not care about the order in which the pi occur.

For the second part, if p satisfies the condition in Proposition 150
and q ≤ p, then q satisfies the condition a fortiori.

Finally, Proposition 150 implies that (1, 2, . . . , n) is a parking func-
tion and increasing any of its components results in a non-parking
function. The third part of the corollary then follows from the first.

Corollary 151 provides an easy way to determine whether a given
list of preferences q is a parking function. First, sort the components
of q to obtain the list q̃ with q̃i ≤ q̃i+1 for all i. Then q is a parking
function if and only if~1 ≤ q̃ ≤ (1, . . . , n). To find all parking functions,
start with the maximal parking function p = (1, . . . , n); next write
down all lists q such that~1 ≤ q ≤ p and q is increasing, i.e., q1 ≤
· · · ≤ qn; finally, take all list obtained by permuting the components
of these increasing parking functions. Consider the case n = 3. The
possibilities for q are (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), and (1, 2, 3) (a
Catalan number!). To get the list of all parking functions, permute
the components of these. The list will include, for example, (2, 1, 1),
(3, 2, 1), and (2, 1, 2).

Exercise 152. List all parking functions of length 3. How many are
there?

Define an increasing parking function to be a parking function p =

(p1, . . . , pn) for which p1 ≤ p2 ≤ · · · ≤ pn.

Proposition 153. The number of increasing parking functions of
length n is the n-th Catalan number, Cn.

Proof. We prove this by providing a bijection between Dyck paths
of length 2n and increasing parking functions of length n. A Dyck
path W of length 2n sits inside the box with opposite corners (0, 0)
and (n, n). As usual, we think of this box as divided into unit squares.
Numbering the rows of the box from top to bottom, let ri be the num-
ber of unit squares in row i that are below the Dyck path. Then add 1
to each ri to obtain the increasing parking function corresponding
to W: p = (r1 + 1, r2 + 1, . . . , rn + 1). Here are two examples, the
second being the unique maximal increasing parking function:

r1 = 0

r2 = 1

r3 = 1

r4 = 3

p = (1, 2, 2, 4)

r1 = 0

r2 = 1

r3 = 2

r4 = 3

p = (1, 2, 3, 4)
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Catalan structures and trees

HOW MANY PARKING FUNCTIONS ARE THERE? There are a Catalan
number of increasing parking functions. Following Proposition 150,
we permute their components in all possible ways to get all parking
functions. How many do we find? The resulting formula is elegant,
and it is also fascinating in light of where we have seen it before. More
on that soon, but first:

Theorem 154. There are (n + 1)n−1 parking functions of length n.

Sketch of proof. Consider a variation of the protocol for parking cars
discussed in class. There are still n cars, C1, . . . , Cn, but this time
there is one extra parking space, numbered n + 1, and the spaces are
arranged in a circle. Car Ci prefers to park in space pi ∈ {1, . . . , n + 1}.
Other than that, the rules are essentially the same: starting just before
space 1, each car in turn drives around the circle to its preferred
spot and parks there if possible. Otherwise, it drives on to the next
available spot. Since the spaces are arranged in a circle and there are
more spaces than cars, each car will eventually park. The preference
list p = (p1, . . . , pn) is called a circular parking function. Here is an
outline for a proof of our result:

;
Circular parking protocol for wagons
on the Oregon trail.

(i) The first step is easy: the total number of circular parking
functions is (n + 1)n. (Why? How many choices are there for
each component pi in the case of a circular parking function?)

(ii) Note that a circular parking function is an actual parking func-
tion if and only if it leaves space n + 1 empty.

(iii) The next step is a little trickier: After the cars park according to
a given circular parking function, there is one empty parking
space. Claim: the number of circular parking functions that
leave space i empty does not depend on the choice of i.

(iv) For i = 1, . . . , n + 1, let Xi be the set of circular parking functions
leaving space i empty. The previous step says the Xi partition
the set of circular parking functions and that |Xi| = (n + 1)n for
all i. The overcounting principle then yields the result.

The formula in Theorem 154 is Cayley’s formula for the number
of (labeled) trees on n + 1 vertices! This coincidence cries out for a
combinatorial bijection between parking functions and trees. We now
describe such a bijection, which goes through a new intermediary
structure called a labeled Dyck path.

Start with a parking function p = (p1, . . . , pn). While reading the
following procedure, it will help to refer to Figure 40. Here is a bijection between parking

functions of length n, labeled Dyck
paths of length 2n, and trees with n + 1
vertices labeled by {0, 1, . . . , n}.
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» Draw the usual n × n grid of unit-area boxes in which to draw
a Dyck path of length 2n, and number its rows and columns in
reverse of the standard order: so rows are numbered from top
down and columns are numbered from right to left. Thus, the top-
right box is in row 1 and column 1, and the bottom-left box is in
row n and column n.

» Let q = (q1, . . . , qn) be the list obtained by permuting the pi so that
they are in non-decreasing order. Thus, q is an increasing parking
function, and according to the proof of Proposition 153 it corre-
sponds bijectively with a Dyck path, which we will denote D(q). To
briefly recall the construction, D(q) is determined by the property
that the number of boxes in the i-th row of the region below D(q)
is qi − 1. For convenience, these numbers appear along the right side
of the grid in Figure 40, labeled as q−~1.

» Of course, lots of different parking functions will have the same
sorted parking function q, and thus the same Dyck path D(q). To
associate D(q) uniquely with our p, we add labels to its north steps
as follows: Suppose there are k north steps bordering the eastern
wall of the j column. Then there will be k indices i1 < · · · < ik

such that pi1 = · · · = pik = j. Place these integers i1, . . . , ik in the j-
th column along that wall in increasing order top-to bottom. For
instance, in Figure 40 the numbers 2, 4, and 9 appear in column 1
(the right-most column) since p2 = p4 = p9 = 1. The numbers 1
and 7 appear in column 6 since p1 = p7 = 6.

» Next, going from column 1 to column n place the labels in each
column, in increasing order, i.e., reading from top down, in a list τ.
Prepend τ with 0. Thus, τ = (τ1, τ2, . . . , τn+1) with τ1 = 0 and the
other τi coming from the labels in each column, as described. Write
the list τ along the top of the grid so that τj appears above column j.
Since there are only n columns, τn+1 will appear in a column by
itself off to the left. In Figure 40, we have τ = (0, 2, 4, 9, 6, 5, 17, 8, 3).
Note the correspondence between τ and the labeled north steps
of D(q).

» Up to this point, we have described a bijection between parking
functions and Dyck paths with labeled north steps. To go from
here, bijectively, to trees with vertices labeled by {0, 1, . . . , n} is easy.
For j = 0, . . . , n + 1, draw an edge from vertex τj to all the vertices
listed in column j. Thus, in Figure 40, we start with τ1 = 0. The
labels appearing in column 1 are 2, 4, and 9. So we start building
our tree by connecting vertex 0 to vertices 2, 4, and 9. Next, τ2 = 2,
and column 2 contains the label 6. So we draw an edge between
vertex 2 to vertex 6. Note that τ4 = 9, and column 4 contains no
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labels. Therefore, in the construction of our tree, we connect no
further edges to vertex 9.

2
4
9

6
5

1
7

8
3

0
↓

2
↓

4
↓

9
↓

6
↓

5
↓

1
↓

7
↓

8
↓

3
↓

0
0
0
1
2
5
5
6
7

q−~1p = (6, 1, 8, 1, 3, 2, 6, 7, 1)

q = (1, 1, 1, 2, 3, 6, 6, 7, 8)

0

2 4 9

6 5

1 7

8 3

Figure 40: A parking function p and its
corresponding labeled Dyck path and
tree.

Exercise 155. The above construction forges a bridge between Catalan
structures and trees. By appropriately labeling a Catalan structure (the
set of Dyck paths) we arrive at a “finer” structure which is in bijection
with trees. Try to do the same with some other Catalan structure. (The
bijections between various Catalan objects we have already developed
should be of use.)
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P R O B L E M S

1. Illustrate the bijection Ei → Ei+1.

Exceedance =

BeAnC

Exceedance =

AnBeC

Exceedance = Exceedance =

2. Illustrate the inverse of the bijection Ei → Ei+1. (Hint: something
tricky occurs with A here.)
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Exceedance =

BeAnC

Exceedance =

AnBeC

3. In your reading, you saw that expressions consisting of n balanced
parentheses () are in bijection with Dyck paths of length 2n, and,
thus, the number of such expressions is the n-th Catalan num-
ber, Cn.

(i) Describe the bijection between Dyck paths and balanced
parentheses, and apply it to the Dyck path below.

(ii) What is the Dyck path associated with ((())())?

4. Use the Catalan recurrence,

C0 = 1 and Cn+1 =
n

∑
k=0

CkCn−k for n ≥ 0,

to compute the fifth Catalan number by hand.

5. Explain the significance of the following sequence [Stanley, 1999]:

un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, . . .

6. A triangulation of a convex n-gon is a collection of nonintersecting
diagonals (line segments between non-adjacent vertices) that break
the n-gon into triangles.
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(i) Draw all triangulations of convex n-gons for n = 3, 4, 5, 6.
Make a conjecture regarding the number of triangulations.

(ii) Prove your conjecture. (Hint: Label one side of the polygon as
the base. Exactly one triangle in the triangulation includes the
base edge. Use this triangle as the basis for a recursion.)

7. From the reading, we know that full binary trees with n + 1 leaves
and balanced parenthesizations of length 2n are counted by the
Catalan number Cn. The reading also includes a description of
a direct bijection between these two structures. Briefly, given a
full binary tree, label the left edges with ‘(’ on their left and ‘)’ on
their right. Start at the root of the tree and start walking down the
leftwards edge; keep the tree on your left and record the labels
as you pass them. The resulting is the balanced parenthesization
corresponding to the binary tree.
Prove that the process described above works, i.e., that it provides
a bijection. It is recommended that you follow these steps:

(i) Draw several full binary trees and produce the resulting
balanced parenthesizations.

(ii) Prove that the resulting parenthesization is always balanced.
(iii) Describe an algorithm (or function) for turning a balanced

parenthesization into a full binary tree which is inverse to the
above assignment.

8. * Produce a direct bijection between triangulations of a convex
n-gon and full binary trees with n− 1 leaves. Show that diagonal
flips of edges in a triangulation correspond to tree rotations. (A
diagonal flip transforms a quadrilateral � in a triangulation into �.)

9. Let NCn denote the number of noncrossing partitions of [n]. In the
text, you saw a direct bijection exhibiting that NCn = Cn. Reprove
this via the Catalan recurrence:

C0 = 1 and Cn+1 =
n

∑
k=0

CkCn−k for n ≥ 0.

Hint: For the inductive step, consider any noncrossing partition P
of [n + 1]. The number n + 1 is in some block X of P. Let k be the
next largest number in X, or set k = 0 if X = {n + 1}. Observe that
in the partition P, every part contains either only numbers bigger
than k or only numbers smaller than k. (Why?)

10. (i) Following the tips at the end of the video lecture, formulate
the direct bijection between Dyck paths of length 2n and
noncrossing partitions of [n].

(ii) Call a transition from an east step to a north step in a Dyck
path a valley. Verify that the number of valleys in a Dyck
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path corresponds to the number of blocks in the associated
partition.

11. * Show that the number of noncrossing partitions of [n] with
exactly k blocks is the Narayana number

N(n, k) =
1
n

(
n
k

)(
n

k− 1

)
.

This is also the number of Dyck paths of length 2n with exactly k
valleys. Conclude that

Cn =
n

∑
k=1

N(n, k).

12. (i) In turn, each person in your group should make up a parking
function p of length five. The rest of the group should then
check that p is a parking function by (i) using the definition
of a parking function (i.e., the list of preferences allows every
car to park), and (ii) sorting p to get an increasing parking
function and comparing with (1, 2, 3, 4, 5).

(ii) Do the same, but now each person should create a non-
parking function p = (p1, · · · , p5) such that 1 ≤ pi ≤ 5.
Again, check each p in two ways.

13. (Circular parking functions) Consider a variation of the protocol

n + 1 1
2

3

etc.

Ci

for parking cars discussed in class. There are still n cars, C1, . . . , Cn,
but this time there is one extra parking space, numbered n + 1, and
the spaces are arranged in a circle. Car Ci prefers to park in space
pi ∈ {1, . . . , n + 1}. Other than that, the rules are essentially the
same: starting just before space 1, each car in turn drives around
the circle to its preferred spot and parks there if possible. Other-
wise, it drives on to the next available spot. Since the spaces are
arranged in a circle and there are more spaces than cars, each car
will eventually park. The preference list p = (p1, . . . , pn) is called a
circular parking function.

(a) Find the resulting positions of the cars C1, · · · , C5 parking
according to the following circular parking functions:

(i) (3, 2, 1, 3, 5) (ii) (4, 2, 4, 2, 1) (iii) (4, 1, 1, 3, 5)
(iv) (5, 6, 1, 3, 3) (iii) (2, 2, 5, 4, 5) (iv) (6, 6, 6, 6, 6).

Recall that there are now six parking spaces.
(b) Why are there (n + 1)n circular parking functions?
(c) Each circular parking function leaves one space empty. For i =

1, · · · , n + 1, let Pi be the set of circular parking functions
that leave space i empty. If P is the set of all circular parking
functions, then we have a partition:

P = P1 q · · · q Pn+1.
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It turns out that each Pi has the same cardinality. Given that,
what is |Pi| for each i?

(d) Where have you seen the elements in Pn+1 before?
(e) Based on the above results, argue that the number of ordinary

parking functions of length n is the number of labeled trees
on n + 1 vertices.

14. * Using the notation from the previous problem, prove that each Pi

has the same cardinality.

15. Find the labeled Dyck path and corresponding labeled tree for the
parking function p = (3, 2, 5, 1, 2).

16. Let p = (p1, . . . , pn) be a parking function formed by permuting
the entries of the increasing maximal parking function (1, 2, . . . , n).
Describe the corresponding tree.

17. Describe the parking function in bijection with the following
labeled tree:

4

3

0

8

1

2

5 6
7

18. Which trees correspond to increasing parking functions under
this bijection? Note that this is a new Catalan structure! Directly
describe a bijection between Dyck paths and this structure.

19. * In the labeled Dyck path you constructed for Problem 17, forget
the labels and just consider the Dyck path P, itself.

(i) Construct the balanced parenthesization B corresponding
to P.

(ii) Is there a natural way to label B with the vertices of the tree
from Problem 17, perhaps reflecting the labeling of P, that
could lead to a bijection between labeled trees and labeled
balanced parenthesizations in general?

(iii) One could ask the same question for any of the other Cata-
lan structures we have studied. The next step might be to
consider full binary trees.





Discrete probability theory

D ISCRETE PROBABILITY THEORY mathematically describes the
likelihood of particular events drawn from a finite set of outcomes.
In one sense, these probabilities just ‘count with a denominator’, but
the perspective granted by probability theory will allow us to develop
novel tools and understand phenomena that seem paradoxical when
first encountered. The content we will cover here only brushes the
surface of probability theory: we will build from probability spaces
to the fundamental theorems of conditional probability and expected
values of random variables; we do not cover variance, the law of large
numbers, or anything requiring analytic techniques.

Probability spaces

THE DEFINITIONS OF PROBABILITY THEORY are built up from the
notion of a probability space consisting of a sample space S of out-
comes (of an experiment or observation) and a probability distribution
P : 2S → [0, 1] assigning probabilities to subsets of S (called events in
this context). We presently develop these ideas formally.

Definition 156. A sample space is a set, and an outcome is an element of
the sample space. Heuristically, we think of a sample space as the set
of outcomes of an experiment or observation.

Part of the art of probability theory consists of defining a sample
space relevant to the problem you are investigating.

Example 157. If we are rolling a 6-sided die, S = {1, 2, 3, 4, 5, 6}. If we
are flipping a coin two times, S = {HH, HT, TH, TT}. If we are play-
ing Minesweeper, S = {Die, LiveDie, LiveLiveDie, LiveLiveLiveDie, . . .}.

Definition 158. An event E is a subset of the sample space, thought of
as a collection of outcomes. The set of events is denoted 2S.

Example 159. When we are rolling a 6-sided die, if E is rolling an even
number, then E = {2, 4, 6}. If H = {4, 5, 6}, then one way to describe
H is ‘rolling higher than 3.’
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There may be more than one way to describe the same event, and the
same description might correspond to different events if the sample
space is different.

Since events are sets, we can do the usual things to them.

Definition 160. The union of two events A, B is the event A ∪ B, which
can be described as ‘A or B.’ The intersection of A, B is A ∩ B, ‘A and B.’
The complement of A is Ac = S r A, ‘not A,’ or ‘A doesn’t happen.’

There are also some special events and properties thereof that
deserve names.

Definition 161. The empty set ∅ is called the null event (it never
happens) and S is the certain event (it always happens). Two events
A, B are called mutually exclusive if A ∩ B = ∅.

We now come to the main definition of this section. Here [0, 1] =
{x ∈ R | 0 ≤ x ≤ 1} is the closed interval of real numbers between 0
and 1, inclusive.

Definition 162. Given a sample space S, a probability distribution on S is
a function

P : 2S −→ [0, 1]

such that Pause and contemplate this definition.
Do properties (i) and (ii) match your
intuition for how probabilities of events
should behave? Would you expect any
additional properties to be necessary in
order for a probability distribution to be
well-behaved?

(i) P(S) = 1, P(∅) = 0, and
(ii) if A and B are mutually exclusive, P(A ∪ B) = P(A) + P(B).

We will usually call P(E) the probability of E.

Definition 163. A probability space (S, P) is a pair consisting of a sample
space S and a probability distribution on S.

Example 164. The most prevalent example of a probability space is the
uniform probability space on a finite nonempty sample space S. This is
the probability space (S, P) where

P(E) =
|E|
|S| .

This is probably how you have thought about probability in the past,
but we should verify that P satisfies the properties of Definition 162:

(i) We have P(S) = |S|/|S| = 1 and P(∅) = |∅|/|S| = 0/|S| = 0,
as desired.

(ii) If A ∩ B = ∅, then |A ∪ B| = |A|+ |B| and

P(A ∪ B) =
|A|+ |B|
|S| =

|A|
|S| +

|B|
|S| = P(A) + P(B),

as desired.
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Some properties of probability distributions follow directly from set
theory, like those in the following proposition.

Proposition 165. Let (S, P) be a probability space and let A, B ∈ 2S be
events. The following properties hold:

(i) if A ⊆ B, then P(A) ≤ P(B);
(ii) P(A) = 1− P(Ac);

(iii) P(A ∪ B) = P(A) + P(B)− P(A ∩ B);
(iv) P(A ∪ B) + P(Ac ∩ Bc) = 1;
(v) P(A ∩ B) + P(Ac ∪ Bc) = 1.

Proof. We prove (i) here and leave the other verifications to the reader. This proof does not assume that P is
the uniform probability distribution.
Take care to not make this erroneous
assumption if asked to verify something
about a general probability space.

Suppose A ⊆ B. Then B is the disjoint union of A and B \ A. So
P(B) = P(A) + P(B r A). But P(B r A) ≥ 0, so P(B) ≥ P(A).

Example 166. Suppose we have a standard deck of 52 cards, with 13
cards of each suit: hearts ♥ and diamonds ♦ (both red), and clubs
♣ and spades ♠ (both black). Suppose we have shuffled the deck so
that the cards are in random order, and we pick two cards off the top.
What is the probability that the first two cards are both red?

Let’s call R the event that the first two cards are red. The order of
the cards is random, so any pair of cards is equally likely. Therefore
P(R) = |R|/|S|. Here are two different ways to solve this problem;
note that each method uses a different sample space!

There are 52 possible first cards, and then 51 possible second cards,
so the total number of outcomes is 52 · 51. There are 26 red cards, so
there are 26 · 25 outcomes in R and

P(R) =
26 · 25
52 · 51

=
25

102
.

Alternatively, there are (52
2 ) ways to pick two distinct cards out of

the deck. There are (26
2 ) ways to pick red cards, so

P(R) =
(26

2 )

(52
2 )

=
26!

2!24!
52!

2!50!
=

26 · 25
52 · 51

=
25
102

.

Just as in combinatorics, if you want to check your work, compute
in two different ways and see if you get the same answer!

Example 167. Alisha and Bachir each sit in a row of 7 chairs, choosing
their seats at random. What is the probability that they don’t sit next
to each other?

There are 7 · 6 ways to sit. We could count all the different ways to
sit so that there is at least one seat in between them. If A is in the first
or last spot, B has 5 choices for where to sit. Otherwise B has only 4
choices, since A plus one seat on each side takes away 3 out of the 7
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spots. Therefore there are 2 · 5 + 5 · 4 = 30 different ways for the pair to
sit not next to each other, and the probability of them not sitting next
to each other is 30

7·6 = 5
7 .

Alternatively, it is perhaps easier to count the different ways for
them to sit together and then take the complement. In this case, there
are 6 ways we can choose a spot for the pair and 2 ways they can sit in
that spot (AB or BA) so the probability we want is 1− 6·2

7·6 = 1− 2
7 = 5

7 .
(Here we have used Proposition 165(ii).)

As you can see, counting the complement was easier, and this is
frequently a useful technique.
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Independence

INVOKING INDEPENDENCE OF EVENTS can drastically simplify a
computation. Beware, though, that the meaning of independence in
probability theory is at odds with its colloquial usage. You will need
to verify that two events are independent before using this hypothesis
in an argument.

Throughout this section, fix a probability space (S, P).

Definition 168. Events A, B ∈ 2S are independent when

P(A ∩ B) = P(A) · P(B).

Example 169. Suppose we have an unfair coin, so the probability of
flipping heads is always 3/4. What is the probability of getting four
heads in a row? four tails in a row? exactly two heads out of four
flips?

Notice this is not a uniform probability space. However, each flip
has the same probability of being heads as the flip before it. Effec-
tively, the problem as stated is asserting that flipping heads on the
first, second, third, or fourth flip are all independent of each other.

We can model this with a probability tree as in Figure 41. Each level
in the tree will be an independent event, with branches labelled with
probability. To calculate, find the right leaves corresponding to the
event of interest, multiply the probabilities leading to those leaves,
and add up all the products.

For instance, there is only one leaf corresponding to four heads and
all the edges leading to this event are labeled by 3/4, so

P(HHHH) =
3
4
· 3

4
· 3

4
· 3

4
=

(
3
4

)4
=

81
256

.

Similarly,

P(TTTT) =
(

1
4

)4
=

1
256

.

For two heads and two tails, we need to add up the products for the
events HHTT, HTHT, HTTH, THHT, THTH, and TTHH:

P(2 H, 2 T) = P(HHTT) + P(HTHT) + P(HTTH) + P(THHT) + P(THTH) + P(TTHH)

= 6 ·
(

3
4

)2 (1
4

)2

=
54

256

=
27

128
.

Notice that the six terms correspond to (4
2).
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Figure 41: The probability tree for four
flips of a weighted coin with probability
of heads equal to 0.75.
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Example 170. Suppose that we draw a number from the set {1, 2, . . . , 49}
at random. Let F be ‘picking a number divisible by 5’ and let E be
‘picking an even number.’ Are these events independent?

We can construct a uniform probability space to solve this, where
F = {5, 10, . . . , 45} and E = {2, 4, . . . , 48}. Then |S| = 49, |F| = b 49

5 c =
9, |E| = b 49

2 c = 24, and |F ∩ E| = b 49
10c = 4, so P(F) = 9

49 , P(E) = 24
49 ,

P(F) · P(E) = 9·24
492 and P(F ∩ E) = 4

49 . But 4
49 6=

9·24
492 = 216

2401 , so these
events are NOT independent.

This is how you prove that events are not independent. You would
proceed in the same way to check that events are independent, but
would get an equality between P(A ∩ B) and P(A)P(B) in the end.
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Conditional probability

CONDITIONAL PROBABILITY is a concept that will allow us to better
cope with non-independent events. Throughout this section, fix a
probability space (S, P).

Definition 171. Let A, B ∈ 2S be events and assume P(B) > 0. The
conditional probability of A given B is

P(A|B) = P(A ∩ B)
P(B)

.

Note that A and B with P(B) > 0 are independent if and only
if P(A|B) = P(A). Since P(A|B) is the probability that A happens
given that B happens, we see that A and B are independent when the
occurrence of B does not make the occurrence of A any more or less
likely.

Example 172. We toss a fair coin four times. We don’t see the results,
but someone who does truthfully tells us that at least two of the tosses
were heads. What is the probability that all four tosses were heads?

To answer this question, we must find P(A|B) where A is the event
“all four tosses are heads” and B is the event “at least two tosses are
heads.” Note that A ∩ B = A, so P(A|B) = P(A)/P(B). Of course,
P(A) = (1/2)4 = 1/16. Meanwhile, B is the disjoint union of the
events “exactly two heads,” “exactly three heads,” and A. Thus

P(B) =
(4

2)

16
+

(4
3)

16
+

1
16

=
11
16

.

We conclude that P(A|B) = 1/11.

Example 173. Let [n] = {1, 2, . . . , n} and let π : [n] → [n] be a
randomly selected permutation. Let A be the event that π(1) > π(2).
Let B be the event that π(2) > π(3). What is P(A|B)? Are A and B
independent events?

Clearly P(A) = P(B) = 1/2. Note that A ∩ B is the event that
π(1) > π(2) > π(3). Since there are 3! = 6 orderings of 3 numbers,
P(A ∩ B) = 1/6. Thus P(A|B) = P(A ∩ B)/P(B) = 1/3. Since
P(A) = 1/2 6= 1/3, we conclude that A and B are not independent.

It is relatively intuitive that the events of Example 3 are not inde-
pendent. After all, if π(2) > π(3), then π(2) is “on the big side,” so it
will be harder for it to be smaller than π(1). But be careful in applying
this sort of reasoning. Intuition can easily lead us astray in probability
theory, as the following example demonstrates.
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Example 174. During the 2016 Renn Fayre softball tournament, Profes-
sor A had a higher batting average than Professor B. The same is true
of their batting averages during the 2017 tournament. Does it follow
that A’s cumulative 2016–17 batting average is higher than B’s?

Counterintuitively – but unsurprisingly given the setup – the an-
swer is NO, not necessarily. Indeed, consider the following statistics.

2016 2017 2016–17
hits 10 3 13

A at bats 30 5 35
average .333 .600 .371

hits 3 24 27
B at bats 10 60 70

average .300 .400 .386

We see that A has higher batting averages each season, but B has
the higher cumulative batting average!

This counterintuitive phenomenon is pervasive and important
enough to merit a name: Simpson’s paradox. Note that there is no real
paradox here, only something that goes against our intuition. In order
to put a finer point on how and why Simpson’s paradox arises, we
turn to the Law of Total Probability.

Theorem 175 (Law of Total Probability). Let A and B be mutually
exclusive events (A ∩ B = ∅) such that A ∪ B = S and P(A)P(B) > 0.
Then for any event C,

P(C) = P(C|A)P(A) + P(C|B)P(B).

We can interpret this theorem as saying that the probability of
C is the weighted average of its conditional probabilities. (Here
P(A) and P(B) are the weights. Note that the hypotheses imply that
P(A) + P(B) = 1, so this really makes sense as a weighted average.)

Proof. Note that A ∩ C and B ∩ C are disjoint and (A ∩ C) ∪ (B ∩ C) =
C. Thus P(C) = P(C ∩ A) + P(C ∩ B). Meanwhile,

P(C|A)P(A) + P(C|B)P(B) =
P(C ∩ A)

P(A)
P(A) +

P(C ∩ B)
P(B)

P(B)

= P(C ∩ A) + P(C ∩ B).

We conclude that the two quantities are equal.

In the case of Example 174, we get the following clearer picture
of our softball heroes’ batting averages. Let HitA be the event of
Professor A getting a hit in 2016 or 2017 and similarly define HitB to
be the event of Professor B getting a hit in either season. Let A2016
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and A2017 denote A’s at bats in 2016 and 2017, respectively, and define
B2016 and B2017 similarly. Then by Theorem 175,31 31 Moral exercise: check that the hy-

potheses hold!
P(HitA) = P(HitA |A2016)P(A2016) + P(HitA |A2017)P(A2017)

=

(
10
30

)(
30
35

)
+

(
3
5

)(
5

35

)
≈ 0.371

and

P(HitB) = P(HitB |B2016)P(B2016) + P(HitB |B2017)P(B2017)

=

(
3
10

)(
10
70

)
+

(
24
60

)(
60
70

)
≈ 0.386.

Thus, A’s average over the two seasons is concentrated more in their
first season—using the weight 30/35 compared to 5/35—which is
the lower of their two season averages—10/30 compared to 3/5.
Similarly, B’s average is concentrated more in their second (better)
season. This explains the “paradox” of P(HitB) > P(HitA).

WE NOW CONSIDER how to generalize independence and the Law of
Total Probability when there are more than two events. For indepen-
dence, the right generalization is the maximally strong one.

Definition 176. Events A1, . . . , An are independent if for any nonempty
set I = {i1, . . . , ik} ⊆ {1, . . . , n},

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1) · · · P(Aik ).

We get the following generalization of Theorem 175 via a com-
pletely analogous proof.32 32 Moral exercise: check the details.

Theorem 177 (Law of Total Probability). Let A1, . . . , An be events in the
same sample space S such that A1 ∪ · · · ∪ An = S, P(Ai) 6= 0 for all i, and
Ai ∩ Aj = ∅ for all i 6= j. Let C ⊆ S be any event. Then

P(C) = P(C|A1)P(A1) + · · ·+ P(C|An)P(An).

We conclude by giving a name to an easy algebraic trick with
significant computational ramifications.

Figure 42: Reverend Thomas Bayes,
1701–61

Theorem 178 (Bayes’ Law). If P(A), P(B) 6= 0, then

P(A|B) = P(B|A)P(A)

P(B)
.

Proof. By the definition of conditional probability, we have P(B|A) =

P(B ∩ A)/P(A), so the right-hand side of Bayes’ Law becomes

P(B ∩ A)

P(B)
=

P(A ∩ B)
P(B)

= P(A|B)

as desired.
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Expected value

In this lecture, we will study random variables and expected value. By
the end of it, we should be able to precisely formulate and answer
questions such as “How much can I expect to win if I play the lottery?”
and “What is the expected number of fixed points for a random
permutation?” Throughout, (S, P) is a probability space.

Definition 179. A random variable is a function X : S→ R.

In other words, a random variable is some way of assigning num-
bers to elements of a sample space. Note that we can add and multi-
ply random variables X, Y on the same sample space, and we can also
scale random variables by a real number. For s ∈ S and c ∈ R these
operations are given by the rules

(X + Y)(s) = X(s) + Y(s),

(XY)(s) = X(s)Y(s),

(cX)(s) = c · (X(s)).

We can also assign an expected value (also called expectation, average
value, or mean) to every random variable.

Definition 180. Let X : S → R be a random variable and let X(S) =

{X(s) | s ∈ S} denote the image of X. Then the number

E(X) := ∑
y∈X(S)

y · P(X = y)

is called the expected value of X on S. Here P(X = y) is shorthand for
the probability of the event {s ∈ S | X(s) = y}, i.e. the event that
random variable X takes the value y.

In other words, E(X) is the weighted average of the values X takes,
with weights given by the probability that X takes the corresponding
value.

Example 181. A lottery offers $1 tickets on which you choose six
distinct numbers between 1 and 48, inclusive. The lottery announces
winning numbers and if your ticket matches all the winning numbers
(irrespective of order) you get $1,000,000; otherwise you get nothing.
Expected value allows us to at least partially answer the question
“Should you play this lottery?”

Let S be the sample space of 6-element subsets of [48] = {1, 2, . . . , 48}.
Define X : S → R such that X(s) = −1 if s is not the winning ticket
(because you’ve then lost your $1 investment) and X(s) = 999 999 if
s is the winning ticket (the million dollar prize minus the ticket cost).
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Then X(S) = {−1, 999 999} and the expected value of X is

E(X) = −1 ·
(48

6 )− 1

(48
6 )

+ 999 999 · 1

(48
6 )
≈ −0.918.

This means that if you play this lottery many many times, then in the
long run you can expect to lose about 92 cents each time you play, so
it’s not a good investment.

Expected value has an unexpected property: linearity. For those
who have experience with linear algebra, this literally means that E,
as a function from the R-vector space of random variables to R, is a
linear transformation. If you don’t speak that language yet, consider
the following simply stated theorem as a definition of the term.

Theorem 182. Let X, Y : S→ R be random variables and let c ∈ R. Then

E(X + Y) = E(X) + E(Y)

and
E(cX) = cE(X).

Linearity of expected value is an extremely powerful tool. For the
moment, we defer its proof and instead use it to give a simple proof of
the following remarkable fact.

Theorem 183. The expected value of the number of fixed points in a ran-
domly selected permutation of [n] = {1, 2, . . . , n} is 1.

Proof. Recall that a permutation π has i as a fixed point if π(i) = i. For
1 ≤ i ≤ n and π a permutation of [n], let Xi(π) = 1 if π(i) = i and
let Xi(π) = 0 otherwise. Define X := X1 + X2 + · · ·+ Xn. Then X(π)

is equal to the number of fixed points of π and we are trying to find
E(X). By linearity, it suffices to find E(Xi) for each i and then add up
the values.

For a random permutation π of [n], π(i) is equally likely to take
any of the values in [n]. Thus P(Xi = 1) = 1/n and P(Xi = 0) =

(n− 1)/n. As such,

E(Xi) = 1 · 1
n
+ 0 · n− 1

n
=

1
n

for each 1 ≤ i ≤ n. Thus

E(X) =
n

∑
i=1

E(Xi) =
n

∑
i=1

1
n
= n · 1

n
= 1.

Note that Theorem 182 holds for any natural number n, so we say
that the expected number of fixed points of a permutation of a finite
set is 1.
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Example 184. Consider the sample space S = 6× 6 of two rolls of a
fair 6-sided die. Define the random variable X : S → R to be the sum
of the two rolls. We will compute the expected value of X in two ways:
first, via the definition of expectation, which will prove arduous, and
then via linearity of expectation, which will be much easier.

The sum of two rolls is any integer between 2 and 12, inclusive,
so X(S) = {2, 3, . . . , 12}. We need to compute P(X = 2), P(X = 3),
. . . , P(X = 12). The following table records values of X and the
corresponding rolls.

X(s) s P(X = s)
2 (1, 1) 1/36
3 (1, 2), (2, 1) 2/36
4 (1, 3), (2, 2), (3, 1) 3/36
5 (1, 4), (2, 3), (3, 2), (4, 1) 4/36
6 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) 5/36
7 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) 6/36
8 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) 5/36
9 (3, 6), (4, 5), (5, 4), (6, 3) 4/36

10 (4, 6), (5, 5), (6, 4) 3/36
11 (5, 6), (6, 5) 2/36
12 (6, 6) 1/36

We conclude that

E(X) = 2
1

36
+ 3

2
36

+ 4
3

36
+ 5

4
36

+ 6
5

36
+ 7

6
36

+ 8
5

36
+ 9

4
36

+ 10
3

36
+ 11

2
36

+ 12
1
36

=
252
36

= 7.

Linearity provides a much less labor intensive way to compute the
expected value of X. Define X1 : S → R to be the value of the first
roll, and X2 to be the value of the second role. Then X = X1 + X2, so
E(X) = E(X1) + E(X2). Since each roll is no different from the other,
we have E(X1) = E(X2), and thus E(X) = 2E(X1). Now it is quite
easy to compute E(X1) since P(X1 = 1) = P(X1 = 2) = · · · = P(X1 =

6) = 1/6. Thus

E(X1) = 1
1
6
+ 2

1
6
+ · · ·+ 6

1
6

=
1 + 2 + · · ·+ 6

6

=
6 · 7/2

6

=
7
2

.

We conclude that E(X) = 2 · 7/2 = 7.
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We now proceed to the proof of Theorem 182 for which we will
need the following equivalent formulation of expected value.

Lemma 185. If X : S→ R is a random variable, then

E(X) = ∑
s∈S

X(s)P(s).

(Here we are abusing notation and writing P(s) for P({s}).)

Proof. For each y ∈ X(S), let X−1y := {s ∈ S | X(s) = y}. Then

∑
s∈S

X(s)P(s) = ∑
y∈X(S)

∑
s∈X−1y

X(s)P(s) (grouping like terms)

= ∑
y∈X(S)

∑
s∈X−1y

yP(s) (since X(s) = y for s ∈ X−1y)

= ∑
y∈X(S)

y ∑
s∈X−1y

P(s) (factoring).

It remains to show that ∑s∈X−1y P(s) = P(X = y), but this follows
from the axioms for a probability distribution since

⋃
s∈X−1y{s} is a

partition of the event {s ∈ S | X(s) = y}.

Proof of Theorem 182. Given the lemma, the proof is an exercise is
tracing through definitions. We will prove the first statement and
leave the second one as a moral exercise for the reader.

We have

E(X + Y) = ∑
s∈S

(X + Y)(s)P(s) (Lemma 185)

= ∑
s∈S

X(s)P(s) + ∑
s∈S

Y(s)P(s) (distribution)

= E(X) + E(Y) (Lemma 185),

as desired.
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Bernoulli, binomial, indicator, and geometric random variables

Recall that a random variable X : S→ R assigns a real number to each
outcome in a sample space. Suppose we are running an experiment,
and all we care about is whether it succeeds or not. We can model this
with a Bernoulli random variable X, where X = 1 if the experiment is a
success and X = 0 otherwise. In this case P(X = 1) is usually denoted
p and P(X = 0) as q = 1− p.

If we do a sequence of independent experiments, each of which
results in success with probability p and failure with probability
q = 1− p, and we are interested in the number of successes, we can
model this with a binomial random variable.

Example 186. We have a (possibly unfair) coin, which lands on heads
with probability p and tails with probability q. If we flip the coin 3
times, what is the probability of getting exactly two heads?

Let X be the number of heads out of 3 flips. Then

P(X = 2) = p · p · q + p · q · p + q · p · p =

(
3
2

)
p2q.

The (3
2) factor is why X is called a binomial random variable. If instead

we flip the coin n times, the probability of getting exactly k heads is

P(X = k) =
(

n
k

)
pkqn−k.

Additionally, notice that

n

∑
k=0

P(X = k) =
n

∑
k=0

(
n
k

)
pkqn−k = (p + q)n = 1

by Theorem 65, so all the probabilities sum to 1 as we expect.
To find the expected number of heads after n flips, we can make our

lives easier by using linearity of expectation (Theorem 182). Note that
X = I1 + I2 + . . . + In where

Ij =

1 if the coin is heads on the jth flip,

0 otherwise.

These Ij are called indicator random variables33 because they indicate 33 We called these characteristic functions
and denoted them χj way back when
we first learned about functions!

when a certain condition is met. Then for any j,

E(Ij) = 0 · P(Ij = 0) + 1 · P(Ij = 1) = p

so

E(X) = E(I1) + E(I2) + . . . + E(In) = np.
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If we graph the probabilities P(X = k) = (n
k)pkqn−k associated with

a binomial random variable X, they have a particular shape. As n gets
bigger, the plot approaches a bell curve, or Gaussian distribution. It is
appropriate to approximate the probability distribution of a binomial
random variable with a Gaussian distribution if n is large enough
(usually when np and nq are both significantly larger than 10).

0 10 20 30 40 50 60

0.00

0.05

0.10

p = 0.2
p = 0.5

Figure 43: Plots of P(X = k) for X a
binomial random variable with n = 60
and p = 0.2 or 0.5.

If we again run a series of independent experiments, but we are
interested in the number of attempts needed to obtain the first success,
we can model this with a geometric random variable X, where X = k
means that it takes k trials for the first success. Since succeeding
for the first time on the kth try means failing on all tries up to k − 1,
P(X = k) = qk−1 p. Do all these probabilities still sum to 1?

You may have seen geometric series in a calculus or analysis course.
For |r| < 1, we have the identity

∞

∑
i=0

ri = 1 + r + r2 + r3 + . . . =
1

1− r
.

Notice that
∞

∑
k=1

P(X = k) =
∞

∑
k=1

qk−1 p

= p + qp + q2 p + . . .

= p(1 + q + q2 + . . .)

= p
(

1
1− q

)
=

p
p
= 1

so the probabilities do indeed add to 1.

Example 187. We have a fair twenty-sided die. What is the probability
that we roll a critical hit (20 on the die) within 6 rolls?
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This is P(X ≤ 6) where p = 1/20 and q = 19/20. Then

P(X ≤ 6) = P(X = 1) + P(X = 2) + . . . + P(X = 6)

=
1
20

+
19
20
· 1

20
+

(
19
20

)2
· 1

20
+

(
19
20

)3
· 1

20
+

(
19
20

)4
· 1

20
+

(
19
20

)5
· 1

20

≈ 0.265

What is the expected number of rolls before we roll a 20? Intuition
says that if we have a 1/20 chance, then we will probably roll one
every 20 rolls. Through a similar infinite series trick to the one above,

E(X) =
∞

∑
k=1

k · P(X = k)

= p + 2q · p + 3q2 · p + 4q3·+ . . .

= p(1 + 2q + 3q2 + 4q3·+ . . .)

= p
(

1
(1− q)2

)
=

1
p

so in this case the math confirms our intuition.
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P R O B L E M S

1. A lottery has participants choose 5 distinct numbers from the set
[36] = {1, 2, . . . , 36}. On a prescribed date, the lottery announces a
collection of 5 winning numbers. Complete the following prompts
in order to determine why the lottery does not offer a prize for
having selected only 1 winning number.

(i) What sample space is pertinent in this question? Describe it
both as a collection of certain types of objects, and in a more
mathematical fashion.

(ii) Is it reasonable to put the uniform probability distribution on
this sample space? (Assume that the lottery is fair.)

(iii) Let B denote the event of choosing a ticket with no winning
numbers. What P(B)?

(iv) Let A denote the event of choosing a ticket with at least one
winning number. What is A ∩ B? A ∪ B?

(v) Use the axioms for a probability distribution and your answer
to (iii) to determine P(A).

(vi) [Follow up question] Might it be reasonable to offer prizes for
anyone with 2 or more winning numbers?

2. What is the probability that in a random ordering of a standard
deck of cards, the ace of spades precedes the king of hearts?

(i) Rephrase this as a question about permutations of [52]. What
is the sample space under consideration? the event?

(ii) Prove that the probability of this event (under the uniform
distribution) is 1/2 by producing a bijection between the
event and its complement. (Why does that solve things?)

3. * Your partner invites you to play a game: they write ten distinct
real numbers on ten blank cards. The cards are shuffled randomly
and placed face down on the table. You start at the top of the deck
and start revealing cards. At any point you may choose to stop
turning over cards and select the most recently revealed card. You
win if your selection is the largest of all ten numbers (both those
previously revealed and those still unrevealed). Devise a strategy
which guarantees you will win this game at least 25% of the time.

4. Show that if A and B are independent, then so are their comple-
ments Ac and Bc. Steps:

(i) State, mathematically, what it is you need to show and what
you get to assume.

(ii) Use the standard identity for sets Ac ∩ Bc = (A ∪ B)c, and the
facts, easily derivable from the three axioms for a probability
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distribution, that P(A ∪ B) = P(A) + P(B)− P(A ∩ B) and
that P(Cc) = 1− P(C) for any event C.

5. Roll two fair 6-sided dice, one red and one blue. Let A be the event
that the red die is odd, let B be the event that the blue die is odd,
and let C be the event that the sum of the dice is odd.

(i) Show that each of the three pairs of these events is indepen-
dent.

(ii) Show that P(A ∩ B ∩ C) 6= P(A)P(B)P(C).
(iii) Why is this example interesting?

6. * There are n players in a Go tournament in which each pair of
participants play each other. If n > 2, then it is possible that each
person has lost to someone. For instance, suppose the three players
are a, b, c, it could be that a beat b, and b beat c, and c beat a. We can
picture this situation using the following directed graph in which a
directed edge points from the winning to the loser:

a b

c

If n is large enough, is it possible that for every pair {x, y} of play-
ers, there a person who has beat both x and y? If so, what is the
smallest n for which that is possible? Instead of answering that
question (which you can think about later), in this problem we
will go one further and use probability theory to show that if n is
large enough, it is possible that at the end of the tournament, for
every collection of three players there exists another player who
has beaten them all. Note the curious fact that our proof does not
explicitly describe any specific instance of this occurrence.

(i) Suppose that the outcome of each game is random. (Perhaps
the players are lazy and flip a coin to decide the winner.) Fix a
3-subset {x, y, z} of players and some player w not in {x, y, z}.
What is the probability that w wins against x, y, and z? What
is the probability that w loses against at least one of x, y, z?

(ii) Suppose we have another player w′ different from w, x, y, and
z. Are the results of w′’s matches against x, y, z independent
of the results of w’s matches?

(iii) How many players can appear in the role of w? What is the
probability that each of them loses against at least one of x, y,
z?

(iv) Explain why, in general, for any probability space with
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events A and B and probability distribution P, we have P(A ∪
B) ≤ P(A) + P(B)? Exactly when does equality hold?

(v) Use your answers to (iii) and (iv) and the fact that there
are (n

3) 3-subsets of [n] to produce an upper bound on the
probability that for at least one 3-subset {x, y, z}, no player
beats x, y, and z simultaneously, (equivalently, for at least
one 3-subset, everyone not in the subset loses to at least one
of x, y, or z, as in part (iv))?

(vi) What does it mean if your upper bound from (v) is less
than 1? Use a computer to determine if there are n for which
this happens.

7. (The Monty Hall problem) A game show provides contestants with
the opportunity to win a car. There are three doors labeled A, B,
and C. Behind two of the doors are goats, and behind one of the
doors is a car. For reasons not completely clear to your instructor,
you hope to select the car instead of a goat. The game proceeds
in the following fashion: First, you select a door. Next, the host
reveals a goat behind one of the remaining doors. (Since there are
two goats, there is at least one goat to reveal.) You are then given
the chance to switch your guess. If your final guess is the door with
the car behind it, you win the car. Question: Is it advantageous to
switch your guess?
Here are some assumptions on the problem which should remove
any ambiguity:

· The probability that the car is placed behind any one of the three
doors is 1/3.

· The host knows where the car is.

· If the contestant picks a door with a goat behind it at the be-
ginning, the host opens the remaining door with a goat before
giving the option to switch. If the contestant picks the door with
the car behind it, the host opens any of the other doors with
probability 1/2.

Suppose that you initially pick door A and then let A, B, and C
denote the events “the car is behind door A,” “door B,” and “door
C,” respectively. Let MA, MB, and MC denote the events “the host
opens door A,” “door B,” and “door C,” respectively.

(i) What are P(MC|A), P(MC|B), and P(MC|C)?
(ii) What is P(MC)? (Use the Law of Total Probability.)

(iii) Suppose that the host opens door C revealing a goat. You
should switch your guess to B if P(B|MC) > P(A|MC).
Compute these conditional probabilities (via Bayes’ Law) and
draw a conclusion.
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8. A student taking a true-false test always marks the correct answer
when she knows it and decides true or false on the basis of flipping
a fair coin when she does not know it. If the probability that she
will know an answer is 3/5, what is the probability that she knew
the answer to a correctly marked question?

9. The digits 1, 2, 3, 4 are randomly arranged into two two-digit
numbers AB and CD—each of the four digits is used exactly once.
In this problem you will ultimately determine the expected value
of AB · CD.

(i) Randomly choose two digits from the set {1, 2, 3, 4} without
replacement (for example, we cannot choose 1 twice). What is
their expected product? [To get started: create an appropriate
sample space S and random variable X : S→ R.]

(ii) Note that AB is a linear combination of A and B: namely,
AB = 10A + B. A similar statement holds for CD. Use this fact
along with part (a) and linearity of expectation to determine
the expected value E(AB · CD).

10. (The coupon collector problem) Safeway is running a promotion in
which they have produced n coupons and you randomly receive
a coupon each time you check out. You passionately hope to
one day collect all n coupons. What is the expected number of
times T you’ll have to check out at the store in order to collect all
n? There’s a very clever way to solve this problem with linearity of
expectation!

(i) Label the coupons C1, C2, . . . , Cn. If n = 4, a successful
collection of all 4 coupons might look like C2 C2 C4 C2 C1 C3.
Break the sequence into segments where a segment ends
when you receive a new coupon. In the example sequence,
the segments are:

C2, C2 C4, C2 C1, C3.

Because it will make our lives easier, consider these the 0-th,
1-st, . . . , 3-rd segments (as opposed to 1-st through 4-th). Let
Xk be the length of the k-th segment, and note that k ranges
from 0 through n− 1. In the example, X0 = 1, X1 = 2, X2 = 2,
and X3 = 1. Express T, the total number of checkouts needed
to collect all coupons, as a linear combination of the Xk.

(ii) Compute pk, the probability that you will collect a new
coupon given that you have already collected k of them.
After studying the geometric distribution, we will learn that
E(Xk) = 1/pk. Compute this value.

(iii) Use your answers to (a) and (b) to determine E(T).
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(iv) Can you say anything about the asymptotic behavior of E(T)?

11. With your group, roll a pair of dice twelve times. Record the first
roll on which you roll doubles and also the total number of doubles
that you roll and report these numbers to the instructor. What is
the expected number of doubles in twelve rolls? How long should
it take to roll doubles? How do these numbers compare with the
class’s statistics?

12. An airline has sold 205 tickets for a flight that can hold 200 passen-
gers. Each ticketed person, independently, has a 5% chance of not
showing up for the flight. What is the probability that more than
200 people will show up for the flight?

13. If the same airline consistently oversells the flight from Problem 12
at the same rate, how many flights until we expect more ticketed
passengers to show up than there are seats.

14. With a binomial random variable, we run experiments indepen-
dently, but there are many circumstances of interest that do not
follow this pattern. One such is sampling without replacement: sup-
pose we have a basket of N lottery tickets, K of which are winners. Assume in this problem that 0 ≤ K, n ≤

N.Consider a process in which you draw n of the tickets from the
basket. Let X denote the number of winning tickets drawn; this is
called a hypergeometric random variable.

(i) Think of another real-life scenario modelled by a hypergeo-
metric random variable.

(ii) Prove that

P(X = k) =
(K

k)(
N−K
n−k )

(N
n )

.

(iii) In an election audit, a sample of machine-counted precincts
are recounted by hand to check if the machine and hand
audits match. Suppose there are N precincts, K of them have
counting errors, we sample n precincts, and X counts the
number of precincts in which errors are detected. In what
sense is X a hypergeometric random variable, and what is the
significance of the quantity P(X = 0)?

(iv) Suppose that there are machine-counting errors in 7 of 200
precincts. How many precincts must one sample in order to
guarantee that there is at most a 5% chance of detecting no
errors?



Number theory

Divisibility, prime numbers, and the Fundamental Theorem of Arith-
metic

In our telling, the natural numbers started life as measures of magni-
tude — standard reference objects representing the equivalence classes
of finite sets under bijection.34 Number theory elevates the natural 34 The collection of all finite sets is not

actually a set, but this is morally what’s
going on.

numbers to objects of study in their own right, by investigating the
arithmetic relationships between integers. Primary amongst such
relationships is that of divisibility:

Definition 188. For integers a and b, say that a divides b if there exists Equivalent terminology includes “a is a
divisor of b” and “b is a multiple of a.”an integer m such that

b = am.

When a divides b, we write a | b; when we write such an expression, it
will always be implicit that a and b are integers.

For instance, 6 | 18 because 18 = 6 · 3 and 3 is an integer. Similarly
±1 | b for all b ∈ Z since b = ±1 · (±b). We also have that a | 0 for all
a ∈ Z since 0 = a · 0.

Exercise 189. Show that if a | b and b | c, then a | c. In other words, divisibility is a transitive
relation on Z.

Exercise 190. Suppose that a | b and a | c. Show that a | mb + nc for all
m, n ∈ Z. We say that a divides every integer linear

combination of b and c.

You might be more used to thinking about divisibility in terms
of long-division and remainders. The following theorem puts that
technique on a firm theoretical foundation.

Theorem 191 (Division Algorithm). Suppose a and b are integers with
a > 0. Then there are unique integers q and r such that

b = qa + r

and 0 ≤ r < a. We call r the remainder of b divided by a and q the
quotient.
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Proof sketch. Fix a, b ∈ Z with a > 0 and set

S = {b− xa | x ∈ Z and b− xa ≥ 0}.

You can check that S is a nonempty subset of N. It follows that S has a
smallest element,35 which we call r. As such, there is some q ∈ Z such 35 This property has a name: the natural

numbers are well-ordered. Feel free to
take it as an axiom, or go ahead and
prove it by contradiction, invoking
mathematical induction along the way.

that r = b− qa, i.e., b = qa + r. Since r ∈ S, we know r ≥ 0. We now
show r < a. If not, r− a ≥ 0, so

0 ≤ r− a = (b− qa)− a = b− (q + 1)a < r.

This contradicts the minimality of r, so 0 ≤ r < a. Uniqueness of q and
r is left as a moral exercise for the reader.

The uniqueness portion of the division algorithm immediately
implies the following corollary.

Corollary 192. Suppose a and b are integers with a > 0. Then a | b if
and only if the remainder r of a divided by b is 0.

Having seen the definition of divisibility and its relation to re-
mainders, we now turn to another perspective: partial ordering. For
simplicity, we will restrict ourselves to nonnegative integers, i.e., the
natural numbers N. Divisibility forms a relation on N which satisfies
the following properties:

· reflexivity: a | a for all a ∈N,

· antisymmetry: if a | b and b | a, then a = b,

· transitivity: if a | b and b | c, then a | c.

Definition 193. A partial order on a set S is a relation ≤ which is
reflexive, antisymmetric, and transitive.

We see then that divisibility forms a partial order on N. Of course,
this order is quite different from the standard order by magnitude!
The latter is a total order, meaning that it is antisymmetric, transitive,
and connex: a ≤ b or b ≤ a. This is wildly false for divisibility: 2 - 3
and 3 - 2. In a partially ordered set (or poset for short), there may be The notation a - b means that a does not

divide b.elements which are incomparable.
Under the divisibility relation, N has a unique minimal element, 1.

This means that 1 | a for all a ∈ N, and there are no other elements
satisfying this property. Perhaps more surprisingly, N has a unique
maximal element under divisibility, 0. Indeed, a | 0 for all a ∈ N, and
0 is the only natural number for which this holds.

Definition 194. An integer p > 1 is prime if it is not divisible by any
integers other than ±1 and ±p. If an integer is not prime, 0, or ±1, it is
called composite.
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In other words, the prime numbers are the “second smallest” natu-
ral numbers under divisibility. As we will see shortly, they form the
building blocks for all other natural numbers.

The reader may check that the following numbers are all of the
primes less than 200: Alexander Grothendieck (the most

preeminent algebraic geometer of
the 20th century) once gave 57 as an
example of a prime number. Since
57 = 19 · 3, it is actually composite, but
it is still sometimes referred to as “the
Grothendieck prime.”

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,

149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

We will now state and prove the Fundamental Thoerem of Arith-
metic. This is the sense in which primes are the building blocks for the
integers.

Theorem 195 (Fundamental Theorem of Arithmetic). For every positive
integer m, there exist prime numbers p1, . . . , pn such that Note that there may be duplicate primes

among the pi . If we wish to avoid
duplicates, we can write m = pa1

1 · · · p
ak
k

for p1, . . . , pk distinct primes and
a1, . . . , ak positive integers.

m = p1 · · · pn.

This representation is unique up to reordering: if m = q1 . . . q` for q1, . . . , q`
prime, then ` = n and there is a permutation σ ∈ Sn such that qi = pσ(i).

Proof. We first check that every positive integer has at least one prime
factorization. Fix an integer m > 0. If m = 1, then it is the “empty
product” of primes.36 Now suppose for contradiction that there is an 36 The reader will either enjoy this

argument, or shake their head and
decide that m = 1 is a special case that
should be added to the hypotheses.

integer m > 1 which does not factor into primes; further, let m be the
smallest such integer.37 Then m is not prime itself (it would be its own

37 Well-ordering of N strikes again!
This is a “minimal criminal” argument:
if a counterexample exists, there is a
smallest counterexample. One then
deduces the existence of a smaller
counterexample (“criminal”), resulting
in the desired contradiction.

prime factorization), so m is composite. This means there are integers
a and b such that

m = ab and 1 < a, b < m.

Since m was the smallest positive integer lacking a prime factorization,
we know that a and b have prime factorizations. But now the product
of these factorizations gives m a prime factorization, so we have
reached a contradiction.

It remains to show that prime factorizations are unique up to
reordering. Suppose for contradiction that m is the minimal natural
number that can be factored in two different ways,

m = p1 · · · pn = q1 · · · qk

where the pi and qj are primes and they aren’t reorderings of each
other. Without loss of generality, assume that p1 is the smallest prime
amongst the pi and qj. Use the Division Algorithm to divide qj by p1

and write
qj = aj p1 + rj
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where aj, rj ∈ Z and 0 ≤ rj < p1. In fact, rj 6= 0 as, otherwise, qj would
equal p1, and dividing the prime factorizations by p1 would result in a
smaller counterexample m′ = m/p1.

Let m′ = r1 · · · rk. We will show that m′ is a smaller counterexample,
thus deducing our contradiction. We have ri < p1 < qi, so

m′ = r1 · · · rk < q1 · · · qk = m.

The number m′ has one prime factorization based on factorizations
of r1, . . . , rk. Note that p1 is not one of these primes since each ri is
smaller than p1. To get another factorization, observe that

m′ = (q1 − a1 p1)(q2 − a2 p1) · · · (qk − ak p1).

Expanding this product, we get terms that are all divisible by p1;
indeed, q1 · · · qk = m is divisible by p1, and all the other terms have
an explicit factor of p1. By Exercise 190, it follows that m′ is divisible
by p1. Our second factorization of m′ consists of p1 and a prime
factorization of m′/p1. Our two factorizations are different since one
contains p1, and the other doesn’t. We conclude that m′ < m has
multiple prime factorizations, contradicting minimality of m.

We now know that every nonzero integer m has a unique factoriza-
tion of the form

m = ±pa1
1 · · · p

ak
k

where p1 < · · · < pk are prime and a1, . . . , ak are positive integers.

Exercise 196. Suppose that b is a positive integer with prime factoriza-
tion

b = pb1
1 · · · p

bk
k .

Show that the positive divisors of b are those with prime factorization Note that we allow ai = 0. If all of the
ai = 0, then we get the divisor 1.

pa1
1 · · · p

ak
k with 0 ≤ ai ≤ bi for i = 1, . . . , k.

Conclude that b has

k

∏
i=1

(bi + 1) = (b1 + 1)(b2 + 1) · · · (bk + 1)

positive divisors.

We conclude with a simple but useful corollary of Theorem 195.

Corollary 197. For p prime and a, b integers,

p | ab =⇒ p | a or p | b.

Proof. In order for p to divide ab, it must be a factor in the prime
factorization of a or b.
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The infinitude and distribution of prime numbers

The prime numbers have fascinated mathematicians for millenia. We
begin this section with two proofs of the following theorem.

Theorem 198. There are infinitely many prime numbers.

Both proofs hinge on the following lemma.

Lemma 199. If n is a positive integer, then n and n + 1 share no
common divisors larger than 1.

Proof. If d divides both n and n + 1, then

d | n + 1− n = 1

so d = ±1.

Euclid of Alexandria

Proof of Theorem 198 (Euclid, third century B.C.E.). Suppose for contra-
diction that there are only finitely many primes, p1 < p2 < · · · < pr.
Let

P = p1 · · · pr + 1

and let p be a prime divisor of P. (Such a p exists by the Fundamental
Theorem of Arithmetic.) Then p = pi for some 1 ≤ i ≤ r, so p also
divides P − 1. Since p divides P − 1 and P, the lemma implies that
p = 1, a contradiction. We conclude that there must be infinitely many
primes.

Filip Saidak

Proof of Theorem 198 (Saidak, 2005). Let N1 > 1 be a positive integer.
Since N1 and N1 + 1 share no common divisors greater than 1, we know
that

N2 := N1(N1 + 1)

has at least two distinct prime factors. Similarly,

N3 := N2(N2 + 1)

has at least three distinct prime factors. We recursively define

Nk+1 := Nk(Nk + 1) for k ≥ 1

and observe inductively that Nk has at least k distinct prime factors.
Since k can be arbitrarily large, this implies that there are infinitely
many prime numbers.

Notably, Euclid’s proof is by contradiction, while Saidak’s proof is
direct. In fact, Saidak’s proof does more: it bounds the prime counting
function, which we presently define.
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Definition 200. Let Z+ denote the set of positive integers and define
the prime counting function

π : Z+ −→N

n 7−→ |{p | p is prime and p ≤ n}|.

Since Nk has at least k prime divisors, Saidak’s proof guarantees
that π(Nk) ≥ k. This is enough to prove the infinitude of primes, but
the bounds provided are far from tight. Indeed, if N1 = 2, then N2 = 6
and N3 = 42, but π(42) = 13, which is quite a bit larger than 3. The reader may check that N4 = 1806

and π(1806) = 279. It only gets worse
from there.

Consider the following plot of the prime counting function π.
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Figure 44: A graph of the prime count-
ing function π(n) for n ≤ 200.

In 1797, the French mathematician Adrien-Marie Legendre looked
at a similar collection of data and made the following remarkable
conjecture: for large n, π(n) behaves like n/ log n. To make sense of
this, we need to know what log n is, and we need to formalize the
meaning of “behaves like.”

The natural logarithm log (sometimes denoted ln) is the “base e
logarithm” where e ≈ 2.718281828 . . . is Euler’s constant. To be more
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The graph of x 7→ log x. The value log x
gets arbitrarily large for large x, but its
growth is slower than any polynomial

function in the sense that
limx→∞

log x
p(x) = 0 for every polynomial

p(x).

precise, e is the unique real number larger than 1 such that the area
under the graph of t 7→ 1/t between t = 1 and t = e is 1. Then
log t = x if and only if ex = t. It is also possible to express log x as the
area under the graph of t 7→ 1/t between 1 and x; in the language of
calculus,

log x =
∫ x

1

1
t

dt.

What about “behaves like”? For this, we introduce the notion of
asymptotic equivalence. If functions f and g are “about the same” for n
very large, then the quotient f (n)/g(n) will be close to 1.

Definition 201. Two functions f , g : Z+ → R are called asymptotically
equivalent when

lim
n→∞

f (n)
g(n)

= 1.

In this case, we write f ∼ g.

The limit as n approaches ∞ is another calculus concept that we
will not belabor in this informal discussion. Suffice it to say that we
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can make f (n)/g(n) arbitrarily close to 1 by taking n sufficiently
large.

We are now equipped to state the Prime Number Theorem, which
verifies Legendre’s conjecture.

Adrien-Marie Legendre (1752–1833).
This 1820 watercolor caricature is the

only known portrait of Legendre.

The obscure French politician Louis
Legendre (1752–97). Until 2005, this
portrait was mistakenly thought to

represent the mathematician Legendre!

Theorem 202 (Prime Number Theorem). The prime counting function is
asymptotically equivalent to the function n 7→ n/ log n, i.e.,

π(n) ∼ n
log n

.

The proof of this theorem is well-beyond the scope of this text
and represents one of the crowning achievements of late nineteenth
century mathematics. The first proof was established by Jaques
Hadamard and Charles Jean de la Vallée Poussin in 1896. It uses
the theory of complex numbers and the famous Riemann ζ-function
to deduce the result. While an “elementary” proof was discovered by
Atle Selberg and Paul Erdős in 1949, the methods of complex analysis
remain a powerful driving force in number theoretic research.

1000 2000 3000 4000 5000
100
200
300
400
500
600

0 1000 2000 3000 4000 5000

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 45: The first plot shows π(n) in
blue and n/ log n in red for n ≤ 5, 000.
Importantly, note that the values are not
equal for large n, but their difference
is small compared to the values of
the functions. The second plot shows
nπ(n)/ log(n) in blue for n ≤ 5, 000.
The slow convergence of this quantity
to 1 (the dashed green line) is perhaps
indicative of why the Prime Number
Theorem is a difficult theorem.

Despite the fact that π(n) is well-approximated by a smooth func-
tion for large n, it remains a function with many striking properties.
Looking back to Figure 44, note that there are many plateaus in the
graph. These represent intervals in which the value of π(n) is con-
stant. This happens when several consecutive integers are composite.
The following proposition shows that these plateaus can have arbi-
trary width.

Proposition 203. For any positive integer k, there exist k consecutive
integers that are all composite.
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Proof. Fix a positive integer k and set n = k + 1. Then the integers

n! + 2, n! + 3, . . . , n! + n

are all composite; indeed, for 2 ≤ ` ≤ n, n! + ` = `
(

n!
` + 1

)
and n!/` is

an integer.
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Fermat’s Little Theorem

Observe the following corollary of the Fundamental Theorem of
Arithmetic.

After we learn the Euclidean Algorithm
and Bézout’s identity in the next section,
we will give another proof of this
corollary.

Corollary 204 (Euclid’s Lemma). If p is a prime number, a and b are
integers, and p | ab, then p divides a or b.

Using this, we deduce a nice divisibility result for binomial coeffi-
cients of the form (p

k):

Lemma 205. If p is a prime number and 1 ≤ k ≤ p− 1, then p divides
(p

k).

Proof. Recall that (
p
k

)
=

p(p− 1) · · · (p− k + 1)
k!

.

Since p is prime and k < p, none of the prime factors of k! divide p. It
follows that (p−1)(p−2)···(p−k+1)

k! is an integer, whence(
p
k

)
= p · (p− 1)(p− 2) · · · (p− k + 1)

k!

is manifestly divisible by p.

Lemma 205 has an immediate payoff when we consider the role of
the terms (p

k) in the binomial theorem.
In the world of “mod p arithmetic” that
we will study in the section after next,
this says that (x + y)p = xp + yp. While
not true over Z or R, a large sample of
college first year exams indicates that
many students dream it to be so.

Proposition 206 (The Freshman’s Dream). If p is prime and x, y ∈ Z,
then

p | (x + y)p − xp − yp.

Proof. By the binomial theorem,

(x + y)p − xp − yp =
p−1

∑
k=1

(
p
k

)
xkyp−k.

Since p divides each of the indicated binomial coefficients, it also
divides (x + y)p − xp − yp.

This leads us to Fermat’s Little Theorem, a fundamental number
theoretic fact with broad applications in mathematics and computer
science (especially cryptography). We will sometimes write F`T as short-

hand for Fermat’s `ittle Theorem. This
is distinct from FLT, or Fermat’s Last
Theorem. The latter — marginally
claimed by Fermat in the seventeenth
century but not proven until 1993 by
Andrew Wiles — states that there are
no nonzero integer solutions to the
equation xn + yn = zn for n > 2.

Theorem 207 (Fermat’s Little Theorem). If p is prime and a is an integer,
then

p | ap − a.
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Proof. For a ∈N, we proceed by induction. If a = 0, then ap − a = 0 is
divisible by p. Now fix some a ≥ 0 and assume that p | ap − a. By the
Freshman’s Dream (with x = a and y = 1), we see that p divides

(a + 1)p − ap − 1.

Observe that

(a + 1)p − (a + 1) = [(a + 1)p − ap − 1] + [ap − a] .

We have just seen that p divides the first bracketed term, and the
inductive hypothesis says that p divides ap − a. We conclude that p
divides (a + 1)p − (a + 1), proving F`T for a ∈ N. The following
exercise asks the reader to extend this to a ∈ Z.

Exercise 208. Use the fact that F`T holds for a ∈ N to prove it for
a ∈ Z. (You might want to consider the p = 2 and p odd cases
separately.)
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The Euclidean Algorithm

Consider two positive integers, a and b. The greatest common divisor of
a and b, denoted gcd(a, b), is the largest integer dividing both a and b.
In other words,

gcd(a, b) := max{d ∈N | d | a and d | b}.

Dually, we can consider the least common multiple of a and b,

lcm(a, b) := min{m ∈N | a | m and b | m}.

In these definitions, we have taken maxima and minima with
respect to the standard ≤ order on N, but we could have just as well
done so with respect to the divisibility partial order, as the proceeding
exercises demonstrate.

Exercise 209. Show that d ∈N is the greatest common divisor of a and
b if and only if (1) d | a and d | b, and (2) for all e ∈ N such that e | a
and e | b, we have e | d.

Exercise 210. Show that m ∈N is the least common multiple of a and
b if and only if (1) a | m and b | m, and (2) for all n ∈ N such that a | n
and b | n, we have m | n.

If we know the prime factorizations of a and b, then gcd(a, b) and
lcm(a, b) are easy to compute.

Exercise 211. Suppose that a = pa1
1 · · · p

ak
k and b = pb1

1 · · · p
bk
k for

p1, . . . , pk distinct prime numbers and ai, bi ∈N for 1 ≤ i ≤ k. Then We are allowing ai , bi = 0 in order to
accommodate the same list of primes for
both numbers.gcd(a, b) = pmin{a1,b1}

1 · · · pmin{ak ,bk}
k

and
lcm(a, b) = pmax{a1,b1}

1 · · · pmax{ak ,bk}
k .

In reality, prime factorizations are computationally expensive, so
this is not a good way to compute gcd and lcm. For gcd, we turn to
the far less expensive Euclidean algorithm. We will present a graphical
exploration of this algorithm before expressing it formally.

Consider an a× b rectangle R(a, b). If d divides both a and b, then The method of subdividing rectangles
into squares considered here is due
to the ancient Greeks and is called
anthyphairesis, which roughly translates
as ‘alternated subtraction.’

a d× d square can tile R(a, b): a/d squares in the horizontal direction
and b/d squares vertically. If d = gcd(a, b), then d is the largest integer
such that d× d squares tile R(a, b).

Consider the following process when a = 78 and b = 66. Since

78 = 1 · 66 + 12,

we can fit exactly one 66 × 66 square in R(78, 66) with a 12 × 66
rectangle leftover. Now

66 = 5 · 12 + 6



160

so we can fit five 12× 12 squares in R(12, 66) with a 12× 6 rectangle
leftover. We have

12 = 2 · 6 + 0

so we can fit two 6× 6 squares in R(12, 6) with nothing leftover. This
process is summarized in the following picture:

66

12

12

12

12

12

6 6

Moreover, 6 × 6 squares tile all of R(78, 66), so we know that
6 divides both 78 and 66. The reader may check that, in fact, 6 =

gcd(78, 66).
Let’s do this again but with a = 1180 and b = 482. Since

1180 = 2 · 482 + 216

we have two 482 × 482 squares in R(1180, 482) with a 216 × 482
rectangle leftover. Now

482 = 2 · 216 + 50

so two 216× 216 squares fit in R(216, 482) with a 50× 216 rectangle
leftover. We have

216 = 4 · 50 + 16

so we can fit four 50× 50 square in R(50, 216) with a 50× 16 rectangle
leftover. We continue with

50 = 3 · 16 + 2

so three 16× 16 squares fit in R(50, 16) with a 2× 16 rectangle leftover.
Finally,

16 = 8 · 2 + 0

so eight 2× 2 squares fit perfectly into R(2, 16). This is all summarized
by the following diagram:
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482 482

216

216

50 50 50 50

Again, the 2× 2 squares tile all of R(1180, 482) and it is in fact the
case that 2 = gcd(1180, 482). This leads us to the following theorem.

Theorem 212 (Euclidean Algorithm). Suppose a > b are positive integers.
Set r−1 = a, r0 = b, and iteratively define rn for n ≥ 1 to be the remainder of
rn−2 divided by rn−1. Then

r−1 > r0 > r1 > r2 > · · ·

is a decreasing sequence of nonnegative integers, and thus there is some
N ≥ 1 which gives the first instance of rN = 0. We have

gcd(a, b) = rN−1.

A generic run of the Euclidean algorithm looks like

a = q0b + r1

b = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4

...

rN−3 = qN−2rN−2 + rN−1

rN−2 = qN−1rN−1 + 0

with a > b > r1 > r2 > · · · > rN−1 > rN = 0. For instance, with
a = 78 and b = 66 as above, we have

78 = 1 · 66 + 12

66 = 5 · 12 + 6

12 = 2 · 6 + 0
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whence gcd(78, 66) = 6. Keeping this structure in mind, let’s go ahead
and prove that the Euclidean algorithm works.

Proof of Theorem 212. We proceed by induction on N, the number of
steps in the Euclidean algorithm. If N = 1, then a = q0b + 0, so b | a
and gcd(a, b) = b = r0, as desired.

Fix some N ≥ 1 and assume that the Euclidean algorithm correctly
computes gcd(a, b) = rN−1 whenever rN = 0 is the first 0 produced.
Now suppose that a > b are positive integers resulting in an (N +

1)-step run of the Euclidean algorithm. Given the structure of the
algorithm, it follows that b > r1 are positive integers resulting in an
N-step run of the algorithm, and, by the inductive hypothesis, rN =

gcd(b, r1). In particular, rN divides both b and r1. Since a = q0b + r1 is
an integer linear combination of b and r1, we also know that rN | a.

Suppose now that d is another integer dividing a and b. Then

d | r1 = a− q0b.

Since rN = gcd(b, r1) and d divides both b and r1, Exercise 209 implies
that d | rN . By another instance of Exercise 209,

rN = gcd(a, b)

as desired.

Bézout’s identity says that we can express gcd(a, b) as an integer
linear combination of a and b. We give an elegant but nonconstruc-
tive proof of this fact, and then extend the Euclidean algorithm so
that it both computes gcd(a, b) and expresses it as an integer linear
combination of a and b.

Theorem 213 (Bézout’s Identity). Let a, b ∈ Z with d = gcd(a, b). Then
there exist integers s and t such that

d = as + bt.

Moreover, the set
{ax + by | x, y ∈ Z}

is the set of multiples of d.

Proof. Let
S = {ax + by | x, y ∈ Z and ax + by > 0}

be the set of integer linear combinations of a and b which are positive.
The set S is nonempty, so by well-ordering it has a least element
d = as + bt for some s, t ∈ Z. We claim that d = gcd(a, b), which will
prove the first part of the theorem. We need to show that d | a, b and
that if e | a, b, then e | d.
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Dividing a by d, we get

a = qd + r with 0 ≤ r < d.

Note that
r = a− qd

= a− q(as + bt)

= a(1− qs)− bqt,

so r ∈ S ∪ {0}. But r is also strictly smaller than the least element of
S, d, so it must be the case that r = 0. This proves that d | a. A similar
argument shows that d | b.

Now suppose that e | a, b, so that a = eu and b = ev for some
integers u and v. Thus

d = as + bt

= eus + evt

= e(us + vt)

and us + vt ∈ Z, so e | d. This proves that d = gcd(a, b) = as + bt is an
integer linear combination of a and b.

For the second part of the theorem, note that d | ax + by for all x, y ∈
Z since d | a, b. This shows that every element of {ax + by | x, y ∈ Z} is
a multiple of d. Given a multiple of d, say du, we have

du = (as + bt)u = asu + btu,

so every multiple of d is in {ax + by | x, y ∈ Z}. This completes the
proof.

It is possible to find s, t ∈ Z such that as + bt = gcd(a, b) by
“back-solving” the Euclidean algorithm, but this method is prone to
arithmetic error when conducted by a human. Here we present the ex-
tended Euclidean algorithm, which allows the user to simultaneously
compute gcd(a, b) and integers s and t such that as + bt = gcd(a, b).
The gcd part is equivalent to the usual Euclidean algorithm; we leave
it to the reader to check that the values of s and t returned are the
desired ones.

Theorem 214 (Extended Euclidean Algorithm). Given integers a > b >

0, do the following:

· (Initialize) Set Here we are using the notation← the
way that computer scientists do. A line
like “a ← 34” means “set the value of a
to 34.”

(x, y; α, β, γ, δ; s)← (a, b; 1, 0, 0, 1; 0).

· (Divide) Divide x by y to get x = qy + r with 0 ≤ r < y. Update the
values of x, y; α, β, γ, δ; s according to the rule

(x, y; α, β, γ, δ; s)← (y, r; γ, δ, α− qγ, β− qδ; s + 1).

If y = 0, go to the next step; otherwise, repeat this step.
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· (Output) Return x; α, β; s.

Then
x = gcd(a, b) = aα + bβ

and the runtime of the algorithm is s.

Here is a representative run of the extended Euclidean algorithm
with a = 270 and b = 192: The observant reader might notice that

αδ− βγ = ±1 at every step below; the
bold reader might conjecture that this
holds for any initial a > b > 0; the
intrepid reader might prove this.

x y α β γ δ s calculation for next line

270 192 1 0 0 1 0 270 = 1 · 192 + 78
192 78 0 1 1 −1 1 192 = 2 · 78 + 36
78 36 1 −1 −2 3 2 78 = 2 · 36 + 6
36 6 −2 3 5 −7 3 36 = 6 · 6 + 0
6 0 5 −7 4

It follows that in five steps, we have calculated that

6 = gcd(270, 192) = 270 · 5 + 192 · (−7).

Exercise 215. Run the extended Euclidean algorithm for a = 986 and
b = 357. Determine d = gcd(986, 357) and integers s and t such that
d = 986s + 357t.
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Modular arithmetic

The Division and Euclidean Algorithms both highlight the importance
of remainders in elementary number theory. Modular arithmetic
provides a method of systematically tracking and manipulating these
remainders.

Definition 216. For m a positive integer and a ∈ Z, write a%m for the
remainder of a divided by m; that is, r = a%m is the unique integer
such that a = qm + r for some q ∈ Z with 0 ≤ r < m. For a, b ∈ Z and
m a positive integer, we say that a is congruent to b modulo m and write

a ≡ b (mod m)

when a%m = b%m.

Proposition 217. Congruence modulo m is an equivalence relation
on Z.

Proof. We need to verify the following statements:

· (Reflexivity) For all a ∈ Z, a ≡ a (mod m).

· (Symmetry) For all a, b ∈ Z, if a ≡ b (mod m), then b ≡ a
(mod m).

· (Transitivity) For all a, b, c ∈ Z, if a ≡ b (mod m) and b ≡ c
(mod m), then a ≡ c (mod m).

These translate into the following statements:

· (Reflexivity) For all a ∈ Z, a%m = a%m.

· (Symmetry) For all a, b ∈ Z, if a%m = b%m, then b%m = a%m.

· (Transitivity) For all a, b, c ∈ Z, if a%m = b%m and b%m = c%m,
then a%m = c%m.

As such, each statement easily follows from the corresponding prop-
erty of equality.

While it is often convenient to think of congruence in terms of re-
mainders, many proofs go more smoothly if we leverage the following
equivalent property.

Proposition 218. For m a positive integer and a, b ∈ Z, we have

a ≡ b (mod m) ⇐⇒ m | a− b.

Proof. First suppose that a ≡ b (mod m), so that a = q0m + r and
b = q1m + r for q0, q1, r ∈ Z and 0 ≤ r < m. Then

a− b = (q0m + r)− (q1m + r) = (q0 − q1)m.
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Since q0 − q1 ∈ Z, this shows that m | a− b.
Now suppose that m | a− b, in which case a− b = q0m for some

q0 ∈ Z. By the Division Algorithm, b = q1m + b%m. Thus

a = q0m + (q1m + b%m) = (q0 + q1)m + b%m.

It follows that a%m = b%m, whence a ≡ b (mod m).

The alternate condition from the proposition allows us to extend
the definition of congruence modulo m to all m ∈ Z. Indeed, if m ≤ 0
we take a ≡ b (mod m) to mean m | a− b. In particular, we see that
a ≡ b (mod 0) means that a = b.

We now consider the set of equivalence classes for the congruence
modulo m relation. Equivalences classes relative to a relation ∼ on a
set S are typically denoted S/∼, but this is unwieldy when ∼ is (≡
(mod m)). Instead, we make the following definition.

Definition 219. The set of equivalence classes for congruence modulo
m is denoted Z/mZ and is called the set of integers modulo m (or
integers mod m for short). The equivalence class of a is denoted [a] ∈
Z/mZ.38 38 This conflicts with our usual notation

[n] = {1, 2, . . . , n}. We hope this does
not create confusion since {1, 2, . . . , n} is
not an element of Z/mZ.

Proposition 220. For m a positive integer, the set Z/mZ has cardinality
m and may be written as

Z/mZ = {[0], [1], . . . , [m− 1]}.

We have
[a] = {a + km | k ∈ Z}.

Proof. Every integer has a remainder r ∈ Z satisfying 0 ≤ r < m, and
the integers 0, 1, . . . , m− 1 achieve these remainders. Since b ∈ [a] if
and only if b%m = a%m, this implies that the elements of Z/mZ are
exactly [0], [1], . . . , [m− 1].

For the second assertion, it is easier to use the divisibility criterion
from Proposition 218. We have b ∈ [a] if and only if m | a− b, meaning
that a− b = qm for some q ∈ Z. Thus b = a− qm is of the form a + km
for k = −q.

Note that there is a canonical surjective function

q : Z −→ Z/mZ

a 7−→ [a]

called the quotient map from Z to Z/mZ. Given Proposition 220,
we see that this is essentially the “remainder-upon-division-by-m”
function since [a] = [a%m] and the potential remainders represent all
congruence classes.
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WE CAN ADD , SUBTRACT, AND MULTIPLY congruence classes
modulo m.39 Fix m ∈ Z. In an act of potential naïveté, for a, b ∈ Z we 39 Division is another matter which we

will discuss shortly.might try to define
[a] + [b] := [a + b],

[a]− [b] := [a− b], and

[a] · [b] := [ab].

Remarkably, this works, but it might take a moment to realize what is
at stake in this putative definition. Many different integers a produce
the same congruence class [a], so we must check that our definitions
are insensitive to this choice of representative. To this end, suppose
that a′ and b′ are integers such that [a] = [a′] and [b] = [b′]. In order
for our definitions to be well-founded, we need to check that

[a + b] = [a′ + b′],

[a− b] = [a′ − b′], and

[ab] = [a′b′].

For the first equality, note that m | a− a′ and m | b− b′. It follows
that

m | (a− a′) + (b− b′) = (a + b)− (a′ + b′)

so we indeed have [a + b] = [a′ + b′].

Exercise 221. Prove that subtraction and multiplication of congruence
classes are also well-defined.

The fact that the above addition, subtraction, and multiplication
operations on mod m congruence classes are well-defined tells us
that we may add, subtract, and multiply congruences. In particular, if
a ≡ b (mod m) and c ≡ d (mod m), then it follows that

a + c ≡ b + d (mod m),

a− c ≡ b− d (mod m), and

ac ≡ bd (mod m).

Remark 222. When m = 12, this version of addition should be familiar
to the reader. If it is 10A .M . and your friend wants to meet in eight
hours, then taking the remainder of 10 + 8 = 18 upon division by
12 reveals that you should meet at 6P.M .. In this sense, Z/12Z with
addition and multiplication is “clock arithmetic.” When m = 7, we
can think of the the classes [0], [1], . . . , [6] as Monday, Tuesday, . . . ,
Sunday as the days of the week. The fact that [2] + [5] = [0] indicates
that Monday is five days after Wednesday.

The operations + and · on Z/mZ

are both commutative, meaning that
[a] + [b] = [b] + [a] and [a][b] = [b][a] for
all a, b ∈ Z.

We should note that [0] + [a] = [a] for all a ∈ Z, and [a] + [−a] =
[a− a] = [0], so Z/mZ is a “number system” in which every congru-
ence class has an additive inverse. In terms of the standard representa-
tives [0], [1], . . . , [m− 1], we have [a] + [m− a] = [0].
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The fact that addition an multiplication are well-defined in Z/mZ

allows us to record a new version of Proposition 206. This theorem
told us that for p prime and x, y ∈ Z, p divides (x + y)p − xp − yp.

Proposition 223 (The Freshman’s Dream, Redux). Suppose p is a prime
number and x, y ∈ Z. Then

(x + y)p ≡ xp + yp (mod p)

We now come to the question of division. We have [1] · [a] = [a] for
all a ∈ Z, so [1] is a multiplicative identity in Z/mZ. We would like to
know if there is a congruence class [b] such that [a][b] = [1]. If so, then
[b] is called the multiplicative inverse of [a].

Exercise 224. Show that [a] ∈ Z/mZ has at most one multiplicative
inverse.

Theorem 225. Fix a positive integer m. The congruence class [a] of a ∈ Z

has a multiplicative inverse if and only if gcd(a, m) = 1.

Proof. First suppose that gcd(a, m) = 1. Then, by Bézout’s idenity
(Theorem 213) says that there are integers s, t such that

1 = as + mt.

Taking congruence classes mod m, we see that

[1] = [a][s] + [m][t].

We have [m] = [0], and thus [m][t] = [0][t] = [0 · t] = [0], and it follows
that

[1] = [a][s],

as desired; in other words, [s] is the multiplicative inverse of [a].
Now suppose that [a] has a multiplicative inverse [s] in Z/mZ.

Then
[1] = [a][s] = [as]

so m | 1− as. This means that 1− as = mt for some t ∈ Z, i.e.,

1 = as + mt.

Again by Theorem 213, the set of integer linear combinations of a and
m is equal to the integer multiples of their greatest common divisor.
The only way 1 can be expressed in this way is if gcd(a, m) = 1.

Example 226. If m = 6, then only [1] and [5] have multiplicative
inverses in Z/6Z. This is exhibited by the following multiplication
table for Z/6Z:
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· [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

Here we see that [1] has multiplicative inverse [1] and [5] has multi-
plicative inverse [5].

When m = p is a prime number, we have gcd(a, p) = 1 as long as p
does not divide a. This produces the following corollary.

Corollary 227. If p is prime, then every [a] ∈ Z/pZ r {[0]} has a
multiplicative inverse.

This makes Z/pZ a field, that is, a set
equipped with commutative, associa-
tive, and unital addition and multipli-
cation such that every element has an
additive inverse and every nonzero
element has a multiplicative inverse.

Recall that F`T (Theorem 207) states that for p prime, p | ap − a for
all a ∈ Z. This means that ap ≡ a (mod p) for all a ∈ Z. As long as
p does not divide a, the corollary tells us that [a] has a mutliplicative
inverse [b] in Z/pZ. Thus for p - a ∈ Z,

ap ≡ a (mod p) =⇒ apb ≡ ab (mod p)

=⇒ ap−1 ≡ 1 (mod p).

The final statement is an alternate version of F`T. Note that when
p | a, a ≡ 0 (mod p) and 0p−1 ≡ 0 (mod p), so the hypothesis on a is
necessary.

WE CONCLUDE THIS SECTION BY STUDYING SOLUTIONS TO

LINEAR CONGRUENCES . Let’s begin with an example,

5x + 2 ≡ 6 (mod 12)

where we are trying to solve for x ∈ Z. This example is small enough
to permit a guess-and-check solution, but let’s try to be systematic.
Subtracting 2 from both sides, we see that this is equivalent to

5x ≡ 4 (mod 12). (228)

Since gcd(5, 12) = 1, Theorem 225 tells us that [5] has a multiplicative
inverse in Z/12Z. This inverse is [s] where s ∈ Z satisfies the Bézout
identity

1 = 5s + 12t.

Applying the extended Euclidean algorithm, we see that

1 = 5 · 5 + 12 · (−2)
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so [5] is its own multiplicative inverse in Z/12Z. This is easy to check: 52 = 25 ≡ 1
(mod 12).Multiplying (228) by 5 (and recalling that 5 · 5 ≡ 1 (mod 12)) gives

x ≡ 20 (mod 12). Replacing 20 with 20%12 gives

x ≡ 8 (mod 12)

so we have deduced that every integer of the form 8 + 12k, k ∈ Z,
solves the initial congruence.

The method we just used is completely general and works to solve

ax ≡ b (mod m) (229)

as long as gcd(a, m) = 1. Indeed, if [c] ∈ Z/mZ is the multiplicative
inverse of [a] in Z/mZ, then

x ≡ bc (mod m)

solves the congruence. In particular, we can always solve (229) when
m = p is prime and p - a.

The following exercise shows that the condition gcd(a, m) = 1 is
not quite necessary to solve a linear conguence of the form (229).

Exercise 230. Show that the congruence

ax ≡ b (mod m)

has a solution if and only if gcd(a, m) | b.

Exercise 231. For each of the following congruences, either find all
solutions or show that no solution exists:

(i) 4x ≡ 17 (mod 19),
(ii) 102x ≡ 15 (mod 105)

(iii) 11x ≡ 3 (mod 22).
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Modular units and Euler’s totient function

In Theorem 225, we saw that congruence classes [a] ∈ Z/mZ such
that gcd(a, m) = 1 play a special role. Indeed, these are exactly the
congruence classes which have a multiplicative inverse.

Definition 232. For m a positive integer and a ∈ Z, the congruence
class [a] ∈ Z/mZ is called a unit (or unit modulo m) when gcd(a, m) =

1. The set of all units in Z/mZ is denoted Z/mZ×. Some other texts call such [a] reduced
residues.

Proposition 233. Fix a positive integer m. The units modulo m satisfy
the following properties: Since multiplication of residue classes

is associative and [1][a] = [a] = [a][1]
for all [a], this means Z/mZ× with the
multiplication operation is a group, one
of the fundamental objects studied in
abstract algebra. Since multiplication
is commutative in Z/mZ× — that is,
[a][b] = [b][a] — it is in fact an Abelian
group.

· (Closure under multiplication) If [a], [b] ∈ Z/mZ×, then [a][b] ∈
Z/mZ×.

· (Closure under inverses) If [a] ∈ Z/mZ×, then there exists [b] ∈
Z/mZ× such that [a][b] = 1.

Proof. By Theorem 225, we may identify Z/mZ× with the set of
[a] ∈ Z/mZ such that [a] has a multiplicative inverse. Write [a]−1 Be careful with the notation [a]−1 for

inverses! It has nothing to do with [a−1]
or [1/a]; in fact, the latter expressions
are not well-defined classes in Z/mZ.

for the multiplicative inverse of [a], and [b]−1 for the multiplicative
inverse of [b]. Then

([a][b])([a]−1[b]−1) = ([a][a]−1)([b][b]−1) = [1][1] = [1]

so [a][b] has multiplicative inverse [a]−1[b]−1. Another application of
Theorem 225 implies that [a][b] ∈ Z/mZ×.

For the second property, observe that [a]−1[a] = [a][a]−1 = [1], so
the multiplicative inverse of [a]−1 is [a]. This shows that [a]−1 is in
Z/mZ×.

Euler’s totient (or ϕ) function measures the number of units in
Z/mZ.

Definition 234. Let Z+ denote the set of positive integers. Then

ϕ : Z+ −→N

m 7−→ |Z/mZ×| = |{a ∈ Z | 0 ≤ a < m and gcd(a, m) = 1}|

is Euler’s totient function.

By Corollary 227, we know that ϕ(p) = p − 1 = p(1− 1
p ). The

following theorem (due to Euler) generalizes this phenomenon to
composite numbers.

Theorem 235. If p1, p2, . . . , pk are the distinct prime factors of a positive
integer m, then

ϕ(m) = m
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
.
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Before we jump into the proof, let’s go through a specific example
that will illustrate the technique. Suppose m = 33, 957 = 32 · 73 · 11.
An integer a satisfying 0 ≤ a < m is relatively prime to m if and only
if it is not divisible by 3, 7, or 11. Every third number in this range is
a multiple of 3, so we must exclude m/3 numbers from our count of
ϕ(m). Similarly, we must exclude the m/7 multiples of 7 and the m/11
multiples of 11. But we have now removed multiples of 3 · 7, 3 · 11, and
7 · 11 more than once! We add them back in to get the count

m− m
3
− m

7
− m

11
+

m
3 · 7 +

m
3 · 11

+
m

7 · 11
.

Finally, we need to remove the numbers divisible by 3 · 7 · 11 (which
have been removed three times and added back three times). This
gives us the final count

ϕ(m) = m− m
3
− m

7
− m

11
+

m
3 · 7 +

m
3 · 11

+
m

7 · 11
− m

3 · 7 · 11

= m
(

1− 1
3
− 1

7
− 1

11
+

1
3 · 7 +

1
3 · 11

+
1

7 · 11
− 1

3 · 7 · 11

)
.

Each term in parentheses is of the form

(−1)i+j+k 1
3i · 7j · 11k

where i, j, k ∈ {0, 1}. These are exactly the terms that arise from
expanding If this step feels mysterious, carefully

expand the indicated product and
convince yourself that it works.

(
1− 1

3

)(
1− 1

7

)(
1− 1

11

)
.

Thus we have computed

ϕ(m) = m
(

1− 1
3

)(
1− 1

7

)(
1− 1

11

)
= 17, 640.

Proof of Theorem 235. Suppose that m is a positive integer with distinct
prime factors p1, p2, . . . , pk. Proceeding via inclusion-exclusion, we
count

ϕ(m) = m− ∑
1≤i≤k

m
pi

+ ∑
1≤i1<i2≤k

m
pi1 pi2

− · · ·+ (−1)k m
p1 p2 · · · pk

.

Factoring, this expression becomes

ϕ(m) = m
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
.

We may interpret the number ϕ(m)/m as the probability of select-
ing a unit uniformly randomly from Z/mZ. Theorem 235 tells us that
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for m with prime factorization pm1
1 pm2

2 · · · p
mk
k (where p1, . . . , pk are

distinct primes),

ϕ(m)

m
=

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
.

Fascinatingly, we learn that the probability of being a unit only de-
pends on the prime factors of m, and not on the multiplicity of the
factors!

Exercise 236. Use Theorem 235 to compute ϕ(1200). What is the
probability of an element in Z/1200Z being a unit?

WE CONCLUDE THIS SECTION BY GENERALIZING FERMAT ’S

L ITTLE THEOREM . In order to do so, we need a small lemma about
multiplication in Z/mZ×. For [a] ∈ Z/mZ×, define the multiplication-
by-[a] function to be

m[a] : Z/mZ× −→ Z/mZ×

[b] 7−→ [a][b].

Lemma 237. For [a] ∈ Z/mZ×, m[a] is a bijection Z/mZ× → Z/mZ×.

Proof. Let [a]−1 denote the multiplicative inverse of [a]. By Proposi-
tion 233, [a]−1 ∈ Z/mZ×. It is easy to check that m[a]−1 is a two-sided
inverse of m[a], so m[a] is a bijection.

Recall that for p prime, F`T implies that ap−1 ≡ 1 (mod p) for
p - a. We also have p− 1 = ϕ(p), so this can be rewritten as aϕ(p) ≡ 1
(mod p) for p - a. Euler’s theorem states that this is generic as long as
gcd(a, m) = 1.

Theorem 238 (Euler). For all positive integers m and all a ∈ Z such that
gcd(a, m) = 1, we have

aϕ(m) ≡ 1 (mod m).

Proof. Fix m, a ∈ Z with m > 0 and gcd(a, m) = 1. The desired
congruence is equivalent to

[a]ϕ(m) = [1] ∈ Z/mZ.

Let [r1], . . . , [rϕ(m)] denote all of the elements of Z/mZ×. By Lemma 237,
the congruence classes

[a][r1], [a][r2], . . . , [a][rϕ(m)]

are just a permutation of the elements of Z/mZ×. Multiplying these
terms, we find that

([a][r1])([a][r2]) · · · ([a][rϕ(m)]) = [r1][r2] · · · [rϕ(m)].
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Grouping like terms, we have

[a]ϕ(m)[r1][r2] · · · [rϕ(m)] = [r1][r2] · · · [rϕ(m)].

By Proposition 233, the product of the [ri]’s is invertible in Z/mZ×.
Multiplying by ([r1][r2] · · · [rϕ(m)])

−1 we get

[a]ϕ(m) = [1] ∈ Z/mZ.

Example 239. Let’s try to determine 5262%21 without doing long
division. Since 52 ≡ 10 (mod 21), this is the same as determining
1062%21. Applying Theorem 235, we see that ϕ(21) = 21(1− 1/3)(1−
1/7) = 12. Since gcd(10, 21) = 1, we can apply Theorem 238 to
conclude that 1012 ≡ 1 (mod 21). We have 62 = 5 · 12 + 2, and thus

1062 ≡ 105·12+2 (mod 21)

≡ (1012)5 · 102 (mod 21)

≡ 15 · 100 (mod 21)

≡ 16 (mod 21).

It follows that 5262%21 = 16.
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Sunzi’s Theorem

The Chinese mathematician Sunzi Suanjing considered the following
problem in the 3-rd century C.E. A general arrays his soldiers on
the parade grounds. He first organizes them into columns of 3, but
there are only 2 soldiers in the final column. He then organizes them
into columns of 5, but there are only 3 soldiers in the final column.
Finally, he organizes them into columns of 7, and again there are only
2 soldiers in the final column. How many soldiers does the general
command?

Figure 46: A fascimile of a Qing dynasty
edition of The Mathematical Classic of
Sunzi.

Using the language of congruences, we can phrase the general’s
observations as

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7).

What (if any) integers x simultaneously satisfy these congruences?
Let us begin by solving the first two congruences, x ≡ 2 (mod 3) ≡

3 (mod 5). By guess-and-check, we quickly see that x = 8 is a solu-
tion. In fact, if x ≡ 8 (mod 15), we solve both congruences. Indeed,
such x are equal to 15k + 8 for some k ∈ Z, and 15 ≡ 0 modulo both 3
and 5.

We now need to solve the congruences x ≡ 8 (mod 15) ≡ 2
(mod 7). A little thought reveals that x = 23 works, and the same
logic as before shows that x ≡ 23 (mod 105) gives all solutions
(because 105 = 15 · 7).

This brief exploration indicates the following theorem and its proof.

Theorem 240 (Sunzi’s Theorem [née Chinese Remainder Theorem]).
Suppose N = n1n2 · · · nk and that the ni are pairwise relatively prime
integers (so gcd(ni, nj) = 1 for i 6= j). Then for any integers a1, . . . , ak the
system of congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has precisely one solution x = x0 with 0 ≤ x0 < N and all solutions are of
the form x ≡ x0 (mod N).

Proof. We proceed by induction on k. If k = 1, then we may take x to
be the remainder of a1 divided by n1 and clearly all solutions are of
the form x + n1r = x + Nr, r ∈ Z.

Fix s ≥ 1 and suppose that all such systems with k = s terms have
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solutions as described. Now consider a system of s + 1 congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ as (mod ns)

x ≡ as+1 (mod ns+1).

where the ni are pairwise relatively prime. Let us first endeavor to
solve the first two congruences. Since n1 and n2 are relatively prime,
there are integers m1 and m2 such that 1 = m1n1 + m2n2. Construct
the number a1,2 = a2m1n1 + a1m2n2. Since m1n1 = 1−m2n2, we have
a1,2 = a2(1− m2n2) + a1m2n2 = a2 + n2(a1m2 − a2m2). Reducing
mod n2, we get a1,2 ≡ a2 (mod n2). If we begin with the substitution
m2n2 = 1− m1n1, we similarly get a1,2 ≡ a1 (mod n1). Thus a1,2 is
a simultaneous solution of the first two congruences. We get all such
solutions by considering x ≡ a1,2 (mod n1n2). (The diligent reader
should check this.) Thus we can solve the original s + 1 congruences by
solving the system

x ≡ a1,2 (mod n1n2)

x ≡ a3 (mod n3)

...

x ≡ as+1 (mod ns+1)

with only s congruences. Note that all the moduli are relatively prime,
so we may invoke the inductive hypothesis, and we are done.

This method of proof is constructive, in that it provides us with
a method via which we can solve our system of congruences. By
repeated application of the extended Euclidean algorithm, we can
eliminate congruences one at a time until we get to a final congruence
x ≡ a1,2,...,k (mod N), where a1,2,...,k is our solution.

In practice, this is not the fastest way to find a solution. (It re-
quires k − 1 applications of the extended Euclidean algorithm.)
Instead, suppose that nk is the largest of the moduli. There are
N/nk = n1n2 · · · nk−1 numbers x such that 0 ≤ x < N and x ≡ ak

(mod nk). If N/nk is relatively small, we (or a computer) can simply
check if each of these numbers satisfies all k congruences.

As an example, consider the system of congruences x ≡ 0 (mod 2) ≡
1 (mod 3) ≡ 2 (mod 5) ≡ 3 (mod 7). The solutions to x ≡ 3 (mod 7)
with 0 ≤ x < 2 · 3 · 5 · 7 = 210 are x = 3, 10, 17, . . . , 206. Eliminating odd
x we are left with x = 10, 24, 38, 52, 66, 80, 94, 108, 122, 136, 150, 164, 178, 192, 206
as possible solutions. It is easy to see that only x = 52, 122, 192 are con-
gruent to 2 (mod 5), and then that only x = 52 is 1 (mod 3). We
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conclude that the only solutions to this system of congruences are
integers x ≡ 52 (mod 210).

There is a direct way to construct solutions as well. Let Ni = N/ni

for i = 1, . . . , k. Observe that Ni and ni are relatively prime, so we can
find Mi and mi such that

1 = Mi Ni + mini.

The reader may check that

x =
k

∑
i=1

ai Mi Ni

is a solution to the system of congruences, and thus all solutions are of
the form

x ≡
k

∑
i=1

ai Mi Ni (mod N).

This recipe gives us a function

f : Z/n1Z×Z/n2Z× · · · ×Z/nkZ −→ Z/NZ

(a1, a2, . . . , ak) 7−→
k

∑
i=1

ai Mi Ni

(We have engaged in the standard subterfuge of conflating integers
and their congruence classes.) There is another natural function
g : Z/NZ → Z/n1Z × · · · × Z/nkZ sending x to the k-tuple
consisting of the reductions of x modulo each ni. The interested reader
may check that these functions are inverse to each other, and thus
these sets are in bijection. In fact, these assignments also respect
addition and thus are isomorphisms of abelian groups; enroll in your
local abstract algebra course to find out more.

Exercise 241. Find all solutions to the system of congruences

x ≡ 2 (mod 11)

x ≡ 3 (mod 12)

x ≡ 4 (mod 13).

Exercise 242. Does Sunzi’s theorem still hold if we drop the require-
ment that the ni are relatively prime? Prove your assertion or provide
a counterexample.
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P R O B L E M S

1. Let a, b, c ∈ Z and suppose that a|b and b|c. Prove that a|c. (Start by
appealing to definition of divisibility to unravel the meaning of a|b
and b|c.)

2. Prove that if a|b and a|c, then a|(mb + nc) for all m, n ∈ Z.

3. Suppose p is prime and that a and k are positive integers. Why is it
the case that if p|ak, then pk|ak?

4. Prove that if p is a prime number, then
√

p is irrational.

5. Prove that a positive integer n is prime if and only if it is not divisi-
ble by any prime p such that 1 < p ≤

√
n. What does this say in the

case n = 91?

6. Suppose that a positive integer n has prime factorization n =

pa1
1 · · · p

ak
k with the pi distinct primes. How many distinct positive

integers are divisors of n?

7. This problem will show there are infinitely many primes of the
form 4n− 1.

Johann Peter Lejeune Dirichlet (1805–59)

Ben Joseph Green (1977–)

Terence Chi-Shen Tao (1975–) with Paul
Erdős (1913–96) in 1985.

(i) For n = 1, 2, . . . , 13, list the numbers 4n− 1, and underline
those that are prime.

(ii) Say pi = 4ni − 1 is prime for some integers ni and i = 1, . . . , k.
Define

N = 4p1 p2 · · · pk − 1.

Our goal is to show N is divisible by some prime of the
form 4n− 1 that is not among p1, . . . , pk. First prove that N is
not divisible by any of p1, . . . , pk.

(iii) Why is it the case that for every odd number k there exists a
unique integer n such that either k = 4n− 1 or 4n + 1, but not
both?

(iv) We have just seen that every odd integer is either of the
form 4n− 1 or 4n + 1. By the definition of N, we see N is of
the former type. Since N is odd, every prime dividing N is
odd, and thus has the form 4n− 1 or 4n + 1 for some n. By
considering the prime factorization of N show that if every
prime dividing N were of type 4n + 1, then N would be of
type 4n + 1, too.

(v) How do the above results constitute a proof that there are
infinitely many primes of the form 4k− 1?

(vi) Let’s put our proof method to work in order to generate
primes of the form 4n − 1. The first two primes of the
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form 4n− 1 are p1 = 3 = 4 · 1− 1 and p2 = 7 = 2 · 4− 1. Find
a prime factor p3 of N = 4p1 p2 − 1 of the form 4n− 1. Repeat,
letting N = p1 p2 p3 − 1 to find p4 of the form 4n− 1 dividing
this new N. Continue in this way finding primes p1, . . . , p6 of
the form 4n− 1. You will want to use a computer. For exam-
ple, at the website https://sagecell.sagemath.org/,
if I type factor(4*3*7-1), and hit the Evaluate button,
I get 83, which indicates that 4 · 3 · 7 − 1 is already prime.
Then typing 83//4 and hitting Evaluate, I see that the
quotient of 83 upon division by 4 is 20. Then typing 83 -

20*4, I see the remainder is 3, and thus 83 - 21*4 is −1,
i.e., 83 = 21 · 4− 1.

In 1837 Dirichlet proved that if a and b
are integers sharing no prime factors,
then there are infinitely many primes
of the form an + b. (We just proved the
special case where a = 4 and b = −1.)
The sequence b, a + b, 2a + b, 3a + b, . . .
is called an arithmetic progression. In
2004, Green and Tao proved that given
any positive integer k, there exists a
sequence of k prime numbers that are
consecutive elements of an arithmetic
progression. For instance, 3, 7 and 11 are
consecutive primes of the form 4n− 1.

8. As an intrepid wagon wheel painter living in the Olde West,
you strive to bring the highest quality, most engaging, non-
monochromatic spoke paintings to your customers. You offer
wagon wheels with p spokes, where p is a prime integer, painted in
up to a colors, where a is a positive integer.

(i) As part of your preparation for painting, you have nailed a
wagon wheel to the wall so that it can’t rotate. In how many
ways can you paint its spokes, assuming that each spoke
gets a single color but at least two of the spokes are different
colors? (Check your solution in the case p = 3 and a = 2 by
drawing the possibilities.)

(ii) When you take the wheel off of the wall and fix it to an axle,
you remember that it will rotate, and that your demanding
customers will not accept rotated spoke paintings as gen-
uinely different. As you turn this particular wheel around,
you notice something remarkable: all of the rotations by
multiples of 2π/p result in distinct colorings in the wheel-
nailed-to-wall sense of unique, despite the fact that there are
multiple spokes of the same color. Is this a special property
of your particular spoke painting, or is it true of all possible
non-monochromatic paintings with a colors?

(iii) Use your work in (ii) to determine the total number of wagon
wheel paintings which your customers will accept as gen-
uinely different. What can you deduce from the fact that this
number is an integer?

9. Use the Euclidean algorithm to compute gcd(270, 192). Either
back-solve or use the extended Euclidean algorithm to express
gcd(270, 192) as an integer linear combination of 270 and 192, i.e.,
find s, t ∈ Z such that

gcd(270, 192) = 270s + 192t.

https://sagecell.sagemath.org/
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10. Run the Euclidean algorithm when a = 45, b = 16. How is it
related to the expression

45
16

= 2 +
1

1 +
1

4 +
1
3

?

Come up with a general procedure by which the Euclidean algo-
rithm produces continued fraction expressions for rational numbers
of the form

a
b
= x1 +

1

x2 +
1

x3 +
1

x4 + · · ·
where the xi are integers.

11. The “rectangular” visualization of the Euclidean algorithm is a
technique from ancient Greece known as anthyphairesis. It gives
us a visual test for when the quotient of two real numbers x/y is a
rational number.

(i) Thinking in terms of similar rectangles, argue that for x and
y positive real numbers, x/y = a/b for some a, b ∈ N if
and only if the anthyphairetic dissection of an x× y rectangle
terminates in a finite number of steps.

(ii) Use (i) to show that
√

2/1 is not a rational number.

12. When is a ≡ b (mod 2)? a ≡ b (mod 1)? a ≡ b (mod 0)?

13. What are the last two digits of 99100000100000+2021?

14. Recall the equivalence relation from the mini-lecture: having
fixed n ∈ Z, for a, b ∈ Z, we say a ∼ b if a− b = kn for some k ∈ Z.
In other words, a ∼ b if and only if a ≡ b (mod n). Take n > 0, for
convenience.

(i) Show that ∼ is an equivalence relation.
(ii) State the division algorithm for integers a and n, and use it to

determine the number of equivalence classes for ∼.

15. Suppose a ≡ a′ (mod n) and b ≡ b′ (mod n).

(i) Prove that a + b ≡ a′ + b′ (mod n).
(ii) Prove that ab ≡ a′b′ (mod n).

16. Let V := {0, 1, · · · , n− 1} for some positive integer n, and fix a ∈
V. Let G(a, n) be the directed graph with vertex set V and with an
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edge from b to c if c = b + a (mod n). Draw this graph for various a
and n, and try to deduce its general structure.

17. (i) Factor 336 and use the factorization to compute ϕ(336),
i.e., the number of positive integers a less than 336 such
that gcd(a, 336) = 1.

(ii) What is the remainder of 5960000290 upon division by 336?

18. (Sketch of probabilistic proof of Euler’s formula for the totient
function) Let n = pe1

1 · · · p
ek
k be the prime factorization of the

positive integer n. Let n := {1, . . . , n} be our sample space with
uniform distribution. For i = 1, . . . , k, define the event Ei to be the
set of r ∈ n such that pi - r.

(i) What are the sets Ei in the case n = 60? What are the probabil-
ities P(Ei).

(ii) Back to the case of general n, what is P(Ei) for each i?
(iii) Let R be the collection of r ∈ n which are relatively prime to n.

Check that R = E1 ∩ E2 ∩ · · · ∩ Ek.
(iv) It turns out that P(R) = P(E1) · · · P(Ek). Use this fact to

prove that

ϕ(n) = n
k

∏
i=1

(
1− 1

pi

)
.

19. For each k ∈ {1, 2, 3, 4}, find all numbers n such that ϕ(n) = k.

20. How does Euler’s formula show that if gcd(m, n) = 1, then ϕ(mn) =
ϕ(m)ϕ(n)? Find the smallest integers a and b such that ϕ(ab) 6=
ϕ(a)ϕ(b).

21. Describe the positive integers n for which ϕ(n)|n.

22. Show there are no integer solutions to the equation

x4 − 125x3 − 75x2 + 5x + 15 = 123456789.

23. Does Sunzi’s theorem still hold if we drop the requirement that
the ni are relatively prime? Prove your assertion or provide a
counterexample.

24. A group of 17 people stack their books in 11 piles of equal size,
each containing more than one book, and an additional pile con-
taining 6 books. They collect the books and this time stack them
into 17 equally-sized piles, with no left over. What is the smallest
number of books they could have had? [Hint: −3 is the multiplica-
tive inverse of 11 modulo 17.]
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25. Find all solutions x ∈ Z to the system of congruences

x = 2 mod 4

x = 3 mod 5

x = 4 mod 9.

26. Find all integers x, y such that

2x + 5y = 4 mod 11

x + 3y = 7 mod 11.

27. (i) Prove that 3 | n3 + 2n for all n ∈N.
(ii) Suppose that f is a numerical polynomial of degree d. Prove

that d divides f (n) for all n ∈N if and only if d divides ∆k[ f ]0
for all k ≥ 0.

(iii) What is the largest number dividing n5 − n for all n ∈N?



Appendix

Mathematical writing
A link to a nice relevant three-page
article by Francis Su:

Writing Mathematics Well

and a one-page summary:

Some Guidelines for Good
Mathematical Writing

Audience

In all of the writing you do for a course based on this text, take
your audience to be your fellow classmates. That will determine
the amount of detail you need to include—do not skip important
details, and do not include details that are not essential.

Sentences!

The most important rule is that your writing should consist solely of
complete sentences. A sentence starts with a capital letter and ends
with a period. If you have a long calculation, you might want to neatly
display it, but it should still be part of a sentence; something like this:

Our result then follows from a calculation:

blah = blah

= blah

...

= blah.

Use of symbols

For better readability, do not start a sentence with a mathematical
symbol (i.e., a mathematical symbol does not count as a capital letter):

No: f is injective but not surjective.

Yes: The function f is injective but not surjective.

In informal mathematical writing—the kind you might use on a
blackboard or on scratch paper—it is common to use the symbols
shown in the margin. In your formal written work, e.g., homework ⇒ : "implies"

⇔ : "if and only if"

∀ : "for all"

∃ : "there exists"

assignments, do not use these. Instead, write out the words. It is

https://math.hmc.edu/su/wp-content/uploads/sites/10/2020/06/Writing-Math-Well-HMC-Math.pdf
https://faculty.math.illinois.edu/~notlaw/Su-Guidelines_for_Good_Mathematical_Writing.pdf
https://faculty.math.illinois.edu/~notlaw/Su-Guidelines_for_Good_Mathematical_Writing.pdf
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slightly more work for you, but it makes life easier for your reader.
Of course, you will need to use symbols in your writing—just do not
use those listed in formal writing. On the other hand, here are some
symbols from logic we encourage you to never use, even in informal
work: “∧" for “and”, “∨” for “or”, and “∼” for “not”. Again, it is
easier on your reader to use the word instead of these symbols.

Red herrings

Whenever you a finish a proof by contradiction and now have the
ideas in front of you, ask yourself whether a straightforward proof
(without contradiction) is at least as clear as the one you have given.
If so, make the change. It makes for a less convoluted argument.
Apply similar reasoning to any proof where you have replaced the
statement of the result by its (logically equivalent) contrapositive
(not Q implies P, rather than P implies Q).

More generally, review your proofs to see if you have included
irrelevant information.

The “backwards” proof.

Theorem. Suppose x ∈ R. Then (x + 1)2 − (x− 1)2 = 4x.

Incorrect proof. Calculate:

(x + 1)2 − (x− 1)2 = 4x

(x2 + 2x + 1)− (x2 − 2x + 1) = 4x

x2 + 2x + 1− x2 + 2x− 1 = 4x

4x = 4x.

The problem with this “proof” is in its first line: it seems to assert
as true exactly what it is trying to prove—circular reasoning. To make
the mistake even more clear, consider the following false statement,
which uses the same reasoning:

Theorem. In R, we have
1 = 0.

Incorrect proof. Calculate:

1 = 0

0 · 1 = 0 · 0
0 = 0.
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To fix the proof of the original theorem, one could just list the lines
of the proof in reverse order—hence, the moniker “backwards”—
starting with 4x = 4x. However, notice another flaw with the proof:
by just listing these lines, we break the rule that a proof consists of
sentences. Here is the correct form, fixing both problems:

Theorem. Suppose x ∈ R. Then (x + 1)2 − (x− 1)2 = 4x.

Proof. Calculate:

(x + 1)2 − (x− 1)2 = (x2 + 2x + 1)− (x2 − 2x + 1)

= x2 + 2x + 1− x2 + 2x− 1

= 4x.

Miscellaneous

Statement: f (n) = n + 2 is even for
all n ∈ Z.
Disproof: Note that f (1) = 3, which is
not even.

Statement: f (n) = n + 2 is divisible by 7
for all n ∈ Z.
False proof: We have f (12) = 14, which
is divisible by 7.

· To prove a statement is false, give a specific concrete counterex-
ample. Try to find the simplest one. The counterexample is more
convincing and easier on the reader than an abstract argument.
Conversely, to prove a statement is true, an example, although
sometimes helpful, is not a proof. You must show why the state-
ment is true in all instances.

· If you use the phrase “by definition” in your writing, make sure
to be specific: by definition of what? For example, you might
write “by definition of a Hausdorff space”. Using the phrase “by
definition” in isolation is usually ambiguous, and if your reader
cannot determine which definition your are referring to, then it
is no help at all—everything in mathematics follows from the
definitions!

· When writing down a calculation, avoid crossing out terms (for
example, when terms cancel in fractions or when they add up
to zero). This type of bookkeeping is easy for the writer, who is
crossing out sequentially, but is usually confusing for the reader,
who sees all of the crosses at once.

TEX pointers

· When defining a function, use\colon rather than :, as in

f\colon X\to Y.

The latter symbol is regarded as an operator and is padded by
unwanted spaces.
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· Use the TEX versions of the trig functions, e.g., \cos(t), \tan(t),
etc., rather then plain cos(t), tan(t), etc. The same goes for
logarithms:\log(t), \ln(t).

· Add a little space before a differential, e.g., \int x\,dx, which
gives

∫
x dx rather than \int xdx, which gives

∫
xdx.



187

Proof templates

The “blah, blah, blah”s appearing in
the template proofs below usually
consists of two parts. The first part is
automatic: you expand the statement of
the theorem using relevant definitions
so that the reader understands what you
are trying to prove. The second is where
the real math occurs. It often requires
some insight and creativity.

By convention, the proofs of certain types of statements are expected
to have a certain structure. Here, we provide examples of some of
these that are important for us. Deviating from these structures risks
confusing your reader and, thus, usually entail the addition of a few
words of guidance in your proof.

Statements involving set containment

Definition. Let A and B be sets. Then A is a subset of B, denoted
A ⊆ B if a ∈ A implies a ∈ B.

Definition. Let A and B be sets. Then these sets are equal, de-
noted A = B if both A ⊆ B and B ⊆ A.

Definition. Let A and B be sets. Then the union of A and B is

A ∪ B := {x : x ∈ A or x ∈ B} .

In words, x ∈ A ∪ B if x is in A or x ∈ B. The intersection of A and B is

A ∩ B := {x : x ∈ A and x ∈ B} .

In words, x ∈ A ∩ B if x ∈ A and x ∈ B.

Theorem. Let A and B be sets defined by [some condition]. Then
A ⊆ B.

Proof. Let a ∈ A. Then blah, blah, blah. Therefore, a ∈ B. It follows
that A ⊆ B.

Theorem. Let A and B be sets defined by [some condition]. Then
A = B.

Proof. Suppose a ∈ A. Then blah, blah, blah. Therefore a ∈ B, too.
Thus, A ⊆ B.

To show the opposite containment, suppose that b ∈ B. Then blah,
blah, blah. Thus, b ∈ A. It follows that B ⊆ A.

Example. Let A, B, and C be sets. Then

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof. Let x ∈ A ∩ (B ∪ C). It follows that x ∈ A and x ∈ B ∪ C.
Since x ∈ B ∪ C, we have that x ∈ B or x ∈ C. Consider the case
where x ∈ B. Then we have x ∈ A and x ∈ B, i.e., x ∈ A ∩ B.

The second and third sentences unravel
the relevant definitions, and should be
automatic. The creativity—admittedly
not much here—then starts.
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Hence, x ∈ (A ∩ B) ∪ (A ∩ C). Now assume that x ∈ C. Similar
reasoning again shows that x ∈ (A ∩ B) ∪ (A ∩ C). We have shown
that

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C).

For the opposite inclusion, suppose x ∈ (A ∩ B) ∪ (A ∩ C). It follows
that x ∈ A ∩ B or x ∈ A ∩ C. Consider the first of these two cases: if x ∈
A ∩ B, then x ∈ A and x ∈ B. Since x ∈ B, it follows that x ∈ B ∪ C.
So x ∈ A and x ∈ B ∪ C, and therefore x ∈ A ∩ (B ∪ C). The second
case, where x ∈ A ∩ C is similar. Hence,

(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

The result follows.

Injectivity, surjectivity, bijectivity

Definition. Let f : A → B be a function. The image of f is the subset
of B defined as follows:

im( f ) := { f (a) : a ∈ A} .

The function f is injective if f (x) = f (y) only if x = y. The function f
is surjective if im( f ) = B, i.e., if for each b ∈ B, there exists a ∈ A such
that f (a) = b. The function f is bijective if it is injective and surjective.

Theorem. The function f : A→ B is injective.

Proof. Let x, y ∈ A, and suppose that f (x) = f (y). Then blah, blah,
blah. It follows that x = y. Hence, f is injective.

Theorem. The function f : A→ B is surjective.

Proof. Let b ∈ B. Then blah, blah, blah. Thus, there exists a ∈ A such
that f (a) = b. Hence, f is surjective.

Theorem. The function f : A→ B is bijective.

Proof. (Alternative 1.) We first show that f is injective. [Follow the
template above to show injectivity.] Next, we show f is surjective.
[Follow the template above toe show surjectivity.]

Proof. (Alternative 2) Define g : B → A as follows: blah, blah, blah.
Note that g ◦ f = idA since blah, blah, blah. Next, note that f ◦ g = idB

since blah, blah, blah.
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Example. Let f : R→ R be defined by f (x) = 2x. Then f is bijective.

Proof. To see f is injective, let x, y ∈ R and suppose that f (x) = f (y).
Since f (x) = f (y), we have that 2x = 2y. Dividing by 2, we see
that x = y. Hence, f is injective.

To see that f is surjective, let z ∈ R (in the codomain). Then, in the
domain, we have z/2 ∈ R , and f (z/2) = 2(z/2) = z. Hence, f is
surjective.

Since f is injective and surjective, it is bijective.

Example. Example 2. Let f : R → R be defined by f (x) = x2. Then f
is neither injective nor surjective.

Proof. To see that f is not injective, note that f (−1) = f (1) = 1 even
though −1 6= 1. To see that f is not surjective, note that −1 is not in
the image of f (x) = x2 since x2 ≥ 0 for all x ∈ R.

Example. Let f : R≥0 → R≥0 be defined by f (x) = x2. Then f is
bijective. (Here, R≥0 denotes the set of nonnegative numbers.)

Proof. Exercise.

Equivalence relations

Theorem. Define a relation ∼ on a set A by blah, blah, blah. Then ∼ is an
equivalence relation.

Proof. Reflexivity. For each a ∈ A, we have a ∼ a since blah, blah, blah.
Therefore, ∼ is reflexive.

Symmetry. Suppose that a ∼ b. Then, blah, blah, blah. It follows
that b ∼ a. Therefore ∼ is symmetric.

Transitivity. Suppose that a ∼ b and b ∼ c. Since blah, blah, blah, it
follows that a ∼ c. Therefore, ∼ is transitive.

Since ∼ is reflexive, symmetric, and transitive, it follows that ∼ is an
equivalence relation.

Induction

See Proposition 70 for an induction proof template.
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