24. 51 4 · Exponential growth & decay Goals · Newton's law of cooling Let y(t) = size of population, varying over time Suppose y(t) = ky(t) for some constant k, i.r. "rate of growth is proportional to size of pop'n Then $y' = ky \Rightarrow = k \Rightarrow \int y' dt = \int k dt$ $\frac{y' = ky}{separable!} \qquad u = y du = y' dt$ $\Rightarrow \log(y) = kt + c$ y = ekt+c [exponentiate] \geq

 $\Rightarrow y = ae^{kt} \quad (a = e^{-1})$ Setting t=0, we see $y(0) = an^2 = a$, so a = initial pop'n. Q If y=ackt, at what time t has the pap's doubled? (h>0) A Want t such that y(t) = 2a $e^{kt} = 2a$ $e^{kt} = 2a$ $e^{kt} = 2 \quad [a \neq 0]$ ae^{kt} = 2a $t = \log(2)$ $t = \frac{\log(2)}{\log(2)}$ (assuming $k \neq 0$).

"carrying capacity" Newton's law of cooling, Now suppose y'= r(S-y) for r, S positive constants Q When is the popin increasing? decreasing? A y increasing => y'>0 => 5-y>0 => y <S y decreasing (=) y>5. Q What is the long: farm behavior of the pop'n?

Let's solve y' = r(S-y): => -¥ =r 5-y separable? $\Rightarrow \int \frac{y}{5-y} dt = \int r dt$ $(a \log lx) = \log (x^{a})$ RHS = rt + c $LHS = -\int \frac{du}{u} = -(\log (u)) = -\log (S-y) = \log (\frac{1}{S-y})$ u=S-y, du=-y dt

Thus $\log\left(\frac{1}{S-y}\right) = rt+c$		
$\Rightarrow \frac{1}{5-y} = e^{rt+c} = ae^{rt} [exponentiate] \\ [a = e^{rt}]$	Ĵ	
$\Rightarrow 5 - y = \frac{1}{\alpha e^{rt}}$		
$\Rightarrow \qquad y = 5 - \frac{1}{a}e^{-rt}$		
What is the rulation b/w I=y(o) and this?		
$I = y(o) = S - \frac{1}{a} \implies a = \frac{1}{S - I} - \frac{1}{s}$		

Thus $y = 5 + (I-5)e^{-rt}$ for I the initial pop'n. Note y -> S as t -> as Call 5 the carrying capacity. Ruch Could also think of Sas room temperature, y the temperature of the liquid in a sup.

NI	
\mathcal{I}_{i}	Q What does r control?
and a second	control!
	· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
Problem You put a turkey in a 350° F	oven
initially at 40°F. After 10 minutes, f	he internal
turkey temperature is 43°F. How low the turkey is ready (165°F)?	la until
the turkey is reary (105 F]?	

		•					N	•		21	5,5	7		(`L	1À	- ?	350	>)		- - 1		0							
	Ľ) :		0 0	1)	ī) (•••	Ċ				Ĵ	÷Q)									
			•	ſ	Ú	مد ک	ł	his	5 . 1	b	f	'n	l	{	~ '														
											•																		