24.811,2 Goals · differential equations & their solutions · separable differentiable equations Let y be a function of t. An equation in t and the derivatives of y is called a differential equation. E.g. y"-y=0 (or, equivalently y"(t)-y(t)=0) $() \quad y'' = y .$ What functions satisfy this? They are solutions to the differential equation.

For y"= y, it turns out that all solutions are a	f thr	form
$y = ae^{t} + be^{-t}$		
for some a, b constants.		
Chick that this work:		
$(ae^{t}+be^{-t})'' = (ae^{t}-be^{-t})'$		
$= ae^{t} - (-be^{-t})$		
$= ae^{t} + be^{-t}$		
This is a "two-parameter family of solutions".		

To specify a particular solin, we need two initial	conditions.
To specify a particular solin, we need two initial For instance, $y(0) = 0$, $y'(0) = 1$.	
initial position initial velocity	
$0 = y(0) = ae^{a} + be^{-a} = a + b$	
$y'(t) = ae^{t} - be^{-t}$ $a = l \Rightarrow$	a= '2
$1 = y'(0) = a - b \implies$	$b = \frac{-1}{2}$
so for the given initial position and velocity, the u $y = \frac{1}{2}(e^t - e^{-t})$	ntque sol'n is

Q What if y(0) = -1, y(0) - 1? -1 = y(0) = a + b= y'(0) = a - b-2 2 -2 $=2a \implies a=0 \implies b=-1$

A y = -e 0 2 -1 Q What if y(0) = y'(0) = 0? A a+b = ylo) = 0 $a=b=0 \implies y=0$ a-b=y(0)=0

E.g. First order equation ty'(t) = 3y(t) Then $y' = \frac{3}{2}$ - the equation is separable: y t we can get y's on one side of the eqin, t's on the other. Integrate: $\int \frac{1}{4} dt = \int \frac{3}{t} dt$ $R_{1+5} = 3 \log[t] + C$ $\begin{aligned} \text{LHS} &= \int \frac{1}{u} du = (\log |u|) + \tilde{C} = \log(y) + \tilde{C} \\ \frac{u-y}{u-y} dt \end{aligned}$

Thus $\log(y) = 3(\log(t) + k = \log(t^3) + k$ for some constant k. Exponentiating $e^{\log(y)} = e^{\log(t^3) + k}$ \Rightarrow $y = e^{\log(t^3)} e^{k}$ => y=Kt³. For K some positive constant If y(1) = 1 than K=1 and $y = t^3$

Problem Solve y'= 3t y (a) in general, and (b) subject to initial condition y(0) = 5. $\frac{y^2}{2} + \tilde{C} = \frac{3}{2} t^2 + C$ yy' = 3t $y^2 = 3t^2 + k$ $\int yy' dt = \int 3t dt$ u=g du=y'dt $y = \pm \sqrt{3t^2 + k}$ $\int u \, du = 3 \frac{t^2}{2} + C$ $\frac{u^2}{2} + \frac{2}{C} = 3\frac{t^2}{2} + C$