Goals · Logistic growth Nous consider the differential equation $\gamma' = r \gamma (1 - \#)$ y much less than K for K some constant. L.if y << K, this is ≈ 1 To solve, separate : ⇒y'≈ry - exponential $\frac{-y}{\gamma(1-\frac{y}{K})} = r$ · but y close to K, this is ≈ 0 so growth slows may y = K.

(you're not responsible for this technique, but it's good to be aware of it!) To need $I = A(I - J/K) + By = A + (-A + B)y$
but it's good to be aware of it!)
To need $I = A(1 - \frac{3}{K}) + By = A + (+++++++++++++++++++++++++++++++$
$\Rightarrow A=1, -\frac{A}{K}+B=0 -\frac{b}{k}c no$ $\Rightarrow A=1, B=\frac{1}{K}$
So $\frac{1}{\gamma(1-\frac{3}{k})} = \frac{1}{\gamma} + \frac{1/k}{1-\frac{3}{k}}$ [check!]

Back to diff'l eq'n: $\frac{y'}{\gamma(1-\frac{y}{k})} = r \implies \int \frac{y'}{y(1-\frac{y}{k})} dt = \int r dt = rt + c$ LHS = $\int \left(\frac{\mathcal{Y}}{\mathcal{Y}} + \frac{\mathcal{Y}'\mathcal{K}}{1 - \mathcal{Y}/\mathcal{K}} \right) dt$ $= \int \frac{y'}{y} dt + \frac{1}{\kappa} \int \frac{y'}{1 - \frac{y}{\kappa}} dt$ $u = 1 - \frac{y}{\kappa} du = -\frac{y'}{\kappa} dt \implies \frac{y'}{dt} = -\frac{\kappa}{du}$ $= \log(y) + \frac{1}{K} \int \frac{-K}{u} du = \log(y) - \frac{K}{K} \int \frac{1}{u} du$ = log(y) - log(1- 8/K) + č

 $= \log(\gamma(1-3/K)^{-1}) + 2$ Since LHS = RHS, $\log\left(\gamma\left(1-\frac{y}{K}\right)^{-1}\right) = rt + c$ \Rightarrow y(1- $\frac{y}{k}$)⁻¹ = e^{rt+c} = ae^{rt} [exponent: afing] $= \frac{Ky}{K-y} = ae^{rt} \qquad \begin{bmatrix} a=e \\ mutil Ltis by \frac{K}{K} \end{bmatrix}$ $= \frac{Ky}{K-y} = ae^{rt} \qquad \begin{bmatrix} mutil Ltis by \frac{K}{K} \end{bmatrix}$ \Rightarrow $ky = ae^{rt}(k-y)$ \implies (K+ae^{rt}) y = aKe^{rt}

 $\Rightarrow y = \frac{a k e^{rt}}{a e^{rt} + K}$ $\implies y = \frac{aK}{a + Ke^{-rt}} \qquad (mult by \frac{e^{-rt}}{e^{-rt}})$ Let I=y(o) and express a in terms of I: $I=y(o)=\frac{aK}{a+K}$ \Rightarrow I·(a+K) = a K IK = a(K-I)

IK a. $K - T_{-}$ $\frac{IK}{I + (K-I)e^{-rt}}$ Thus 0. $\rightarrow IK = K$ as expected I+(k-I).0 Note As t -> 00 y --ノミラ