24. XI. 11 Goal · Volume = 5 (cross-sectional area) · Volume of solids of revolution by disks or washirs $V \approx \sum A(x_i^*) \Delta x$ Volume = $\lim_{n \to \infty} \int_{i=1}^{n} A(x_i^*) \Delta x$ and $= \int_{A(x)}^{b} dx$ X

Slicing Method 1) Examin the solid and determine the shape of cross-sections (with respect to some coordinate axis, probably) 2 Determine à formula for area of cross-section 3 Integrate the area formula over the appropriate interval to get volume.

E.g. Let's find the volume of a circular come with base radius r, height h: f(z)r(2) $A(z) = \pi r(z)^2 - but$ what is r(z)? h $\frac{1}{r(z)}$ By similar triangles, $\frac{h-z}{r(z)} = \frac{h}{r}$ $\Rightarrow r(z) = \frac{r}{h}(h-z) = r - \frac{r}{h}z$ Thus $A(z) = \pi \left(r - \frac{r}{h}z\right)^2$ and $V = \int_{0}^{h} A(z) dz = \int_{0}^{h} \pi \left(r - \frac{r}{h}z\right)^2 dz$ 2-values when va slice thru shape du= - f dz

	$\Rightarrow dz = -\frac{h}{r} du$
So.	by substitution, $V = \pi \int u^2 \left(\frac{-h}{r}\right) du$
	$T = \alpha(\delta)$
	$= -\pi h u^{2}$
	$ \cdot \cdot$
	· · · · · · · · · · · · · · · · · · ·
	$= \frac{\pi h}{r} \frac{r}{3}$
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 h$
	· · · · · · · · · · · · · · · · · · ·
<u>E.q.</u>	Consider cylinders $C_1 = \{(x,y,z) \mid y^2 + z^2 \leq R^2\}$
	$C_{2} = \{(x, y, z) \mid x^{2} + z^{2} \in \mathbb{R}^{2}\}$
	What is the volume of CIAC2 = [(x,y,2) in both C, and c2 }?

(P2-2' & Along which axis should we slice? A Purpendicular to 2-axis so that slices are squares! Side length at height Z is $2(R^2 - Z^2)$ so $A(Z) = 4(R^2 - Z^2)$

Thus $V = \int^{R} 4(R^{2}-z^{2})^{1/2} dz = 4 \int^{R} R^{2} dz - 4 \int^{R} z^{2} dz$ $= 4 \left[\left(\frac{p^{4}}{2} - 2 \frac{p^{2} z^{2}}{2} + \frac{z^{4}}{2} \right] dz = \left[\left(\frac{p^{2}}{2} - \frac{q^{2} z^{3}}{2} \right]_{-p}^{R} \right]$ $= 4\left(R^{4} \pm -\frac{2}{3}R^{2} \pm \frac{1}{5} \pm \frac{1}{5} \pm \frac{1}{5}\right) \left| \frac{R}{-R} \right| = \frac{16}{3}R^{3}$ $= 8(R^5 - \frac{2}{3}R^5 + \frac{1}{5}R^5)$ $V = \frac{16}{3} R^3$ $(no \pi!)$

Problem Find the volume of the solid with base the disk of radius 1 in the xy-plane, cross-sections perpendicular to x-axis equilatoral triangles. From above: (x, VI-x2 $\frac{\sqrt{5}}{2}b(x) \qquad A(x) = \frac{1}{2}bh$ $x_1 = \sqrt{1-x^2}$ $=\frac{1}{2}\frac{\sqrt{3}}{7}b(x)\cdot b(x)$ $b(x) = 2\sqrt{1-x^2}$ $= \frac{\sqrt{3}}{2} b(x)^2 = \sqrt{3} (1-x^2)$

 $V = \int_{-1}^{1} \sqrt{3} \left(1 - x^2 \right) dx$ Solids of revolution Take a region in the plane and rotate it about the x-axis: radius flx) arra T flx)² $\left\{ (x,y,z) \middle| \begin{array}{c} a \leq x \leq b \\ y^2 + z^2 \leq f(x)^2 \end{array} \right\}$ $V = \int_{e}^{b} \pi f(x)^{2} dx$ disk method

1 (x) t.q. (x) f_× $= \int_{a}^{b} \pi \left(f(x)^{2} - g(x)^{2} \right) dx$ R washer method" - 52 02 7

E.g. Find the volume of a solid of revolution formed by revolving the region bounded by the graphs $y=\sqrt{x}$ and $y=\frac{1}{x}$ over the interval [1,3] around the x-axis. y= Vx y= 1/x у 🔶 $V = \int_{1}^{3} \pi \left(\sqrt{x^{2}} - \left(\frac{1}{x}\right)^{2} \right) dx = \pi \int_{1}^{3} (x - x^{-2}) dx$

 $= \pi \left(\frac{1}{2} \chi^2 - \frac{\chi^{-1}}{-1} \right) \bigg|_{1}^{3} = \pi \left(\frac{1}{2} \chi^2 + \frac{1}{\chi} \right) \bigg|_{1}^{3}$ $= \pi \left(\frac{9}{2} + \frac{1}{3} - \left(\frac{1}{2} + 1 \right) \right)$ $=\pi\left(3+\frac{1}{3}\right)$ $\bigvee_{n=1}^{\infty} \frac{10\pi}{3}$ Problem Use the disk method to compute the volume of a ball of radius r.